Article

Nrf1 is targeted to the endoplasmic reticulum membrane by an N-terminal transmembrane domain - Inhibition of nuclear translocation and transacting function

Department of Laboratory Medicine and Pathology, University of California, Irvine, California 92697, USA.
Journal of Biological Chemistry (Impact Factor: 4.6). 08/2006; 281(28):19676-87. DOI: 10.1074/jbc.M602802200
Source: PubMed

ABSTRACT Expression of antioxidant and phase 2 xenobiotic metabolizing enzyme genes is regulated through cis-acting sequences known as antioxidant response elements. Transcriptional activation through the antioxidant response elements involves members of the CNC (Cap 'n' Collar) family of basic leucine zipper proteins including Nrf1 and Nrf2. Nrf2 activity is regulated by Keap1-mediated compartmentalization in the cell. Given the structural similarities between Nrf1 and Nrf2, we sought to investigate whether Nrf1 activity is regulated similarly to Nrf2. Nrf1 also resides normally in the cytoplasm of cells. Cytoplasmic localization however, is independent of Keap1. Colocalization analysis using green fluorescent protein-tagged Nrf1 and subcellular fractionation of endogenous Nrf1 and fusion proteins indicate that Nrf1 is primarily a membrane-bound protein localized in the endoplasmic reticulum. Membrane targeting is mediated by the N terminus of the Nrf1 protein that contains a predicted transmembrane domain, and deletion of this domain resulted in a predominantly nuclear localization of Nrf1 that significantly increased the activation of reporter gene expression. Treatment with tunicamycin, an endoplasmic reticulum stress inducer, caused an accumulation of a smaller form of Nrf1 that correlated with detection of Nrf1 in the nucleus by biochemical fractionation and immunofluorescent analysis. These results suggest that Nrf1 is normally targeted to the endoplasmic reticulum membrane and that endoplasmic reticulum stress may play a role in modulating Nrf1 function as a transcriptional activator.

0 Followers
 · 
63 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Coordinated regulation of the ubiquitin-proteasome system (UPS) is crucial for the cell to adjust its protein degradation capacity to changing proteolytic requirements. We have shown previously that mammalian cells upregulate proteasome gene expression in response to proteasome inhibition. Here, we report the identification of the transcription factor TCF11 (long isoform of Nrf1) as a key regulator for 26S proteasome formation in human cells to compensate for reduced proteolytic activity. Under noninducing conditions, TCF11 resides in the endoplasmic reticulum (ER) membrane. There, TCF11 is targeted to ER-associated protein degradation requiring the E3 ubiquitin ligase HRD1 and the AAA ATPase p97. Proteasome inhibitors trigger the accumulation of oxidant-damaged proteins and promote the nuclear translocation of TCF11 from the ER, permitting activation of proteasome gene expression by binding to antioxidant response elements in their promoter regions. Thus, we uncovered the transcriptional control loop regulating human proteasome-dependent protein degradation to counteract proteotoxic stress caused by proteasome inhibition.
    Molecular cell 10/2010; 40(1):147-58. DOI:10.1016/j.molcel.2010.09.012 · 14.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In Saccharomyces cerevisiae, chemical or genetic inhibition of proteasome activity induces new proteasome synthesis promoted by the transcription factor RPN4. This ensures that proteasome activity is matched to demand. This transcriptional feedback loop is conserved in mammals, but its molecular basis is not understood. Here, we report that nuclear factor erythroid-derived 2-related factor 1 (Nrf1), a transcription factor of the cap "n" collar basic leucine zipper family, but not the related Nrf2, is necessary for induced proteasome gene transcription in mouse embryonic fibroblasts (MEFs). Promoter-reporter assays revealed the importance of antioxidant response elements in Nrf1-mediated upregulation of proteasome subunit genes. Nrf1(-/-) MEFs were impaired in the recovery of proteasome activity after transient treatment with the covalent proteasome inhibitor YU101, and knockdown of Nrf1 in human cancer cells enhanced cell killing by YU101. Taken together, our results suggest that Nrf1-mediated proteasome homeostasis could be an attractive target for therapeutic intervention in cancer.
    Molecular cell 04/2010; 38(1):17-28. DOI:10.1016/j.molcel.2010.02.029 · 14.46 Impact Factor
  • Source
    Toxicology and Applied Pharmacology 04/2010; 244(1):1-3. DOI:10.1016/j.taap.2010.01.005 · 3.63 Impact Factor