Progressive multifocal leukoencephalopathy: lessons from AIDS and natalizumab

Department of Neurology, University of Kentucky College of Medicine, Lexington, 40536, USA.
Neurological Research (Impact Factor: 1.45). 05/2006; 28(3):299-305. DOI: 10.1179/016164106X98198
Source: PubMed

ABSTRACT The dramatic increase in the incidence of progressive multifocal leukoencephalopathy (PML) that occurred as a consequence of the AIDS pandemic and the recent association of PML with the administration of natalizumab, a monoclonal antibody to alpha4 integrin that blocks inflammatory cell entry into the brain, has stimulated a great deal of interest in this previously obscure viral demyelinating disease. The etiology of this disorder is JC virus (JCV), a polyoma virus, observed in 80% of the population worldwide. Seroepidemiological studies indicate that infection with this virus typically occurs before the age of 20 years. No primary illness owing to JCV infection has been recognized and the means of spread from person to person remains obscure. Following infection, the virus becomes latent in bone marrow, spleen, tonsils and other tissues. Periodically the virus reactivates during which time it can be demonstrated in circulating peripheral lymphocytes. The latter is significantly more commonly observed in immunosuppressed populations than that in normal subjects. Despite the large pool of people infected with JCV, PML remains a relatively rare disease. It is seldom observed in the absence of an underlying predisposing illness, typically one that results in impaired cellular immunity. A variety of factors are likely responsible for the unique increase in frequency of PML in HIV infection relative to other underling immunosuppressive disorders. Preliminary data suggests that natalizumab appears to distinctively predispose recipients to PML relative to other infectious complications. Studies in these populations will be invaluable in understanding the mechanisms of disease pathogenesis.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Progressive multifocal leukoencephalopathy (PML) is a rare, opportunistic infection of the central nervous system, caused by reactivation of the ubiquitous JC virus. PML is a devastating disease that is frequently fatal, and although survival rates have improved, patients who survive PML often experience considerable neurological deficits. PML was associated with a variety of immunosuppressive therapies in the past decade, but attribution of causality is difficult owing to the presence of confounding factors and to an inadequate understanding of the underlying pathogenesis of this disease. This uncertainty has hindered efforts for shared decision-making between physicians and their patients and, in some cases, discouraged the use of potentially beneficial therapies. We propose a categorization of immunosuppressive agents according to their risk of PML to support a better-informed decision-making process when evaluating the risks and benefits of these therapies.
    Nature Reviews Rheumatology 10/2014; DOI:10.1038/nrrheum.2014.167 · 10.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human beings are exposed to a variety of different pathogens, which induce tailored immune responses and consequently generate highly diverse populations of pathogen-specific T cells. CD4 + T cells have a central role in adaptive immunity, since they provide essential help for both cytotoxic T cell-and antibody-mediated responses. In addition, CD4 + regulatory T cells are required to maintain self-tolerance and to inhibit immune responses that could damage the host. Initially, two subsets of CD4 + helper T cells were identi-fied that secrete characteristic effector cytokines and mediate responses against different types of pathogens, i.e., IFN-γ secreting Th1 cells that fight intracellular pathogens, and IL-4 producing Th2 cells that target extracellular parasites. It is now well established that this dichotomy is insufficient to describe the complexity of CD4 + T cell differentiation, and in particular the human CD4 compartment contains a myriad of T cell subsets with characteristic capacities to produce cytokines and to home to involved tissues. Moreover, it has become increasingly clear that these T cell subsets are not all terminally differen-tiated cells, but that the majority is plastic and that in particular central memory T cells can acquire different properties and functions in secondary immune responses. In addi-tion, there is compelling evidence that helper T cells can acquire regulatory functions upon chronic stimulation in inflamed tissues. The plasticity of antigen-experienced human T cell subsets is highly relevant for translational medicine, since it opens new perspectives for immune-modulatory therapies for chronic infections, autoimmune diseases, and cancer.
    Frontiers in Immunology 12/2014; 5. DOI:10.3389/fimmu.2014.00630
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Progressive multifocal leukoencephalopathy (PML) is a rare, myelin-damaging disease of the central nervous system (CNS) in a setting of immunosuppression that is superimposed by concurrent autoimmune diseases such as multiple sclerosis and AIDS or simultaneous administration of immune modulatory monoclonal antibody drugs such as natalizumab. The causative agent is a Polyomavirus known as John Cunningham (JC) virus (JCV) that affects oligodendrocytes and astrocytes resulting in focal, extensive and progressive demyelination across the brain. The pathogenesis of JCV latent and active infection is yet to be fully understood despite significant medical research. To date, no therapeutic intervention has been very effective in addressing the health implications of PML. In this article, we review the current knowledge on the life cycle of JCV, pathogenesis of PML, highlight important tools in the diagnosis, potential targets for management and therapeutic intervention of PML.