The increased accumulation of structurally modified versican and decorin is related with the progression of laryngeal cancer.

Laboratory of Biochemistry, Section of Organic Chemistry, Biochemistry and Natural Products, Department of Chemistry, University of Patras, 26500 Patras, Greece.
Biochimie (Impact Factor: 3.12). 10/2006; 88(9):1135-43. DOI: 10.1016/j.biochi.2006.03.011
Source: PubMed

ABSTRACT Versican and decorin, two proteoglycans (PGs) with contradictory roles in the pathophysiology of cancer, comprise important stromal components in many tumor types and play a crucial role in the progression of cancer. In this study, we provide direct evidence for a significant and stage-related accumulation of versican and decorin in the tumor-associated stroma of laryngeal squamous cell carcinoma (LSCC) in comparison to normal larynx. Both PGs were found to be co-localized within the peritumorous stroma. In addition, the accumulated versican and decorin were markedly modified on both protein core and glycosaminoglycan (GAG) levels. Decorin, which was present under both glycanated and non-glycanated forms, perceptibly increased with the progression of LSCC, compared to the normal larynx. Tumor-associated glycanated decorin was found to contain significant amounts of dermatan sulfate (DS) sequences. Versican was also found to undergo stage-related structural modifications since a marked heterogeneity of protein cores was observed, being intense in late stage of laryngeal cancer. The increased accumulation of both versican and decorin was associated with a significant stage-related increase of the molar ratio of Delta di-mono4S to Delta di-mono6S up to approximately threefold in LSCC compared to the normal ones. The modified chemical structure of both PGs could be associated with the degree of aggressiveness of laryngeal squamous cell carcinomas.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Decorin is an extracellular matrix, multifunctional small proteoglycan molecule in tumor stroma that has been shown to be modulator of angiogenesis. No clinical data is available so far on decorin expression and survival outcome of oral cancer. Aim: The aim of the present study was to examine molecular and phenotypic expression of two angiogenesis modulators viz. decorin and vascular endothelial growth factor-A (VEGF-A) in human potentially malignant oral lesions (PMOLs) and oral squamous cell carcinomas (OSCC) in relation to clinico-pathological variables and survival outcome. Materials and Methods: Tissue biopsies were obtained from 72 PMOLs, 108 OSCC and 52 healthy controls. The PMOLs included cases of leukoplakias and oral submucous fibrosis. Immunohistochemistry was performed using antibodies against decorin, VEGF-A and CD-31. Messenger-ribonucleic acid (mRNA) expression was analyzed by using real-time polymerase chain reaction. Results: Cytoplasmic staining of decorin was observed in the basal layer of epithelium in 53 (73.61%) cases of PMOLs and in peritumoral stroma in 55 (50.92%) cases of OSCC. None of the cases showed nuclear expression of decorin. Decorin expression both at phenotypic and molecular level was found to be down-regulated from PMOLs to OSCC. Lymph node metastasis and reduced decorin expression independently correlated with overall survival in OSCC. VEGF-A expression had no significant impact on survival outcome. Conclusion: Micro vessel density and VEGF-A expression were significantly associated with reduced decorin expression in tumor stroma suggesting, decorin as angiogenic modulator in OSCC. Down-regulation of decorin expression and the presence of lymph node metastasis were adverse factor independently affecting overall survival in OSCC.
    Indian Journal of Pathology and Microbiology 01/2013; 56(3):204-10. · 0.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Muscle-invasive forms of urothelial carcinomas are responsible for most mortality in bladder cancer. Finding new treatments for invasive bladder tumours requires adequate animal models to decipher the mechanisms of progression, in particular the way tumours interact with their microenvironment. Herein, using the murine bladder tumour cell line MB49 and its more aggressive variant MB49-I, we demonstrate that the adaptive immune system efficiently limits progression of MB49, whereas MB49-I has lost tumour antigens and is insensitive to adaptive immune responses. Furthermore, we unravel a parallel mechanism developed by MB49-I to subvert its environment: de novo secretion of the proteoglycan decorin. We show that decorin overexpression in the MB49/MB49-I model is required for efficient progression, by promoting angiogenesis and tumour cell invasiveness. Finally, we show that these results are relevant to muscle-invasive human bladder carcinomas, which overexpress decorin together with angiogenesis- and adhesion/migration-related genes, and that decorin overexpression in the human bladder carcinoma cell line TCCSUP is required for efficient invasiveness in vitro. We thus propose decorin as a new therapeutic target for these aggressive tumours.
    EMBO Molecular Medicine 10/2013; · 7.80 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Members of the ADAMTS family of proteases degrade proteoglycans and thereby have the potential to alter tissue architecture and regulate cellular functions. Aggrecanases are the main enzymes responsible for aggrecan degradation, due to their specific cleavage pattern. In this study, the expression status, the macromolecular organization and localization of ADAMTS-1, ADAMTS-4/aggrecanase-1 and ADAMTS-5/aggrecanase-2 in human normal larynx and laryngeal squamous cell carcinoma (LSCC) were investigated. On mRNA level, the results showed that ADAMTS-4 was the highest expressed enzyme in normal larynx, whereas ADAMTS-5 was the main aggrecanase in LSCC presenting a stage-related increase up to stage III (8-fold higher expression compared to normal), and thereafter decreased in stage IV. Accordingly, immunohistochemical analysis showed that ADAMTS-5, but not ADAMTS-4, was highly expressed by carcinoma cells. Sequential extraction revealed an altered distribution and organization of multiple molecular forms (latent, activated and fragmented forms) of the enzymes within the cancerous and the corresponding macroscopically normal laryngeal tissues, compared to the normal ones. Importantly, these analyses indicated that critical macromolecular changes occurred from the earliest LSCC stages not only in malignant parts of the tissue but also in areas that were not in proximity to carcinoma cells and appeared otherwise normal. Overall, the results of the present study show that ADAMTS-5/aggrecanase-2 is the main aggrecanase present in laryngeal carcinoma suggesting a critical role for the enzyme in aggrecan degradation and laryngeal tissue destruction during tumor progression.
    Biochimie 11/2012; · 3.14 Impact Factor