Article

Mineralization at the interface of implants.

Clinic for Cranio-, Maxillofacial Surgery, University of Münster, Germany.
International Journal of Oral and Maxillofacial Surgery (Impact Factor: 1.36). 10/2006; 35(9):783-90. DOI: 10.1016/j.ijom.2006.03.013
Source: PubMed

ABSTRACT Osseointegration of implants is crucial for the long-term success of oral implants. Mineralization of the bone's extracellular matrix as the ultimate step of a mature bone formation is closely related to implant osseointegration. Osteogenesis at oral implants is a complex process, driven by cellular and acellular phenomena. The biological process of the maintenance and emergence of minerals in the vicinity of oral implants is influenced to a great extent by biophysical parameters. Implant-related structural and functional factors, as well as patient-specific factors, govern the features of osteogenesis. To understand the influence of these factors in peri-implant bone mineralization, it is important to consider the basic biological processes. Biological and crystallographic investigations have to be applied to evaluate mineralization at implant surfaces at the different hierarchical levels of analysis. This review gives insight into the complex theme of mineral formation around implants. Special focus is given to new developments in implant design and loading protocols aimed at accelerating osseointegration of dental implants.

0 Followers
 · 
187 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The spatially resolved phase identification of biologically relevant calcium phosphate phases (CPPs) in bone tissue is essential for the elucidation of bone remodeling mechanisms and for the diagnosis of bone diseases. Analytical methods with high spatial resolution for the discrimination between chemically quite close phases are rare. Therefore the applicability of state-of-the-art ToF-SIMS, XPS and EDX as chemically specific techniques was investigated. The eight CPPs hydroxyapatite (HAP), β-tricalcium phosphate (β-TCP), α-tricalcium phosphate (α-TCP), octacalcium phosphate (OCP), dicalcium phosphate dihydrate (DCPD), dicalcium phosphate (DCP), monocalcium phosphate (MCP) and amorphous calcium phosphate (ACP) were either commercial materials in high purity or synthesized by ourselves. The phase purity was proven by XRD analysis. All of the eight CPPs show different mass spectra and the phases can be discriminated by applying the principal component analysis method to the mass spectrometric data. The Ca/P ratios of all phosphates were determined by XPS and EDX. With both methods some CPPs can be distinguished, but the obtained Ca/P ratios deviate systematically from their theoretical values. It is necessary in any case to determine a calibration curve, respectively the ZAF values, from appropriate standards. In XPS also the O(1s)-satellite signals are correlated to the CPPs composition. Angle resolved and long-term XPS measurements of HAP clearly prove that there is no phosphate excess at the surface. Decomposition due to X-ray irradiation has not been observed.
    Applied Surface Science 08/2014; 309:27–32. DOI:10.1016/j.apsusc.2014.04.129 · 2.54 Impact Factor
  • Source
    Implant Dentistry - The Most Promising Discipline of Dentistry, 09/2011; , ISBN: 978-953-307-481-8
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The effect of local application of autologous platelet-rich plasma (PRP) on bone healing in combination with the use of titanium implants with 2 different surface configurations was investigated. PRP fractions were obtained from venous blood sample of 6 goats and applied via gel preparation and subsequent installation in the implant site or via dipping of the implant in PRP liquid before insertion. Thirty-six implants (18 non-coated and 18 calcium phosphate (CaP) coated) were placed into the goat femoral condyles (trabecular bone). The animals were sacrificed at 6 weeks after implantation, and implants with surrounding tissue were processed for light microscopical evaluation. In addition to subjective description of the histological findings, histomorphometrical variables were also evaluated (the bone-implant contact and the bone mass adjacent to the implant). Significantly more interfacial bone-to-implant contact was observed for all 3 groups of CaP-coated implants and the titanium / liquid group (non-coated implant with PRP liquid) than for the other 2 non-coated titanium groups (with PRP gel or without PRP). The evaluation of the bone mass close to implant surface indicated that all the groups induced a significant increase of the bone mass except the PRP gel groups. On the basis of the observations, it was concluded that magnetron-sputtered CaP coatings can improve the integration of oral implants in trabecular bone. The additional use of PRP did not offer any significant effect on the bone response to the CaP-coated implants, whereas PRP in a liquid form showed a significant effect on bone apposition to roughened titanium implants during the early post-implantation healing phase.
    Tissue Engineering 10/2006; 12(9):2555-63. DOI:10.1089/ten.2006.12.2555 · 4.25 Impact Factor

Preview

Download
6 Downloads
Available from