Article

Enhanced neurogenesis in the ischemic striatum following EGF-induced expansion of transit-amplifying cells in the subventricular zone.

Bridgestone Laboratory of Developmental and Regenerative Neurobiology, Keio University School of Medicine, 35 Shinanomachi, Tokyo 160-8582, Japan.
Neuroscience Letters (Impact Factor: 2.06). 08/2006; 403(1-2):63-7. DOI: 10.1016/j.neulet.2006.04.039
Source: PubMed

ABSTRACT In the subventricular zone (SVZ) of the adult mammalian brain, neural stem cells continually produce transit-amplifying precursors, which generate neuroblasts migrating into the olfactory bulb. Previous studies have suggested that SVZ cells also have the capacity to generate some striatal neurons after cerebral ischemia. The infusion of epidermal growth factor (EGF) has been demonstrated to increase the number of these regenerated neurons. However, which cell types in the SVZ are stimulated to proliferate or differentiate after EGF infusion remains unknown. In this paper, we demonstrated that cerebral ischemia results in an increase in the number of EGF receptor (EGFR)-positive transit-amplifying cells in the SVZ. EGF infusion into the ischemic brain caused the number of transit-amplifying cells to increase and the number of neuroblasts to decrease. On the other hand, after an interval of 6 days after the discontinuation of EGF infusion, a significant increase in the number of neuroblasts was found, both in the striatum and the SVZ. These results suggest that the replacement of neurons in injured striatum can be enhanced by an EGF-induced expansion of transit-amplifying cells in the SVZ.

0 Bookmarks
 · 
72 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The traditional Chinese medicine Buyang Huanwu Decoction has been shown to improve the neu-rological function of patients with stroke. However, the precise mechanisms underlying its effect remain poorly understood. In this study, we established a rat model of cerebral ischemia by middle cerebral artery occlusion and intragastrically administered 5 g/kg Buyang Huanwu Decoction, once per day, for 1, 7, 14 and 28 days after cerebral ischemia. Immunohistochemical staining revealed a number of cells positive for the neural stem cell marker nestin in the cerebral cortex, the subven-tricular zone and the ipsilateral hippocampal dentate gyrus in rat models of cerebral ischemia. Buyang Huanwu Decoction significantly increased the number of cells positive for 5-bromodeoxyuridine (BrdU), a cell proliferation-related marker, microtubule-associated protein-2, a marker of neuronal differentiation, and growth-associated protein 43, a marker of synaptic plasticity in the ischemic rat cerebral regions. The number of positive cells peaked at 14 and 28 days after intragastric administration of Buyang Huanwu Decoction. These findings suggest that Buyang Huanwu Decoction can promote the proliferation and differentiation of neural stem cells and hance synaptic plasticity in ischemic rat brain tissue.
    Neural Regeneration Research 09/2013; 8(25):2336-42. DOI:10.3969/j.issn.1673-5374.2013.25.004 · 0.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Parkinson's disease (PD) is the second most common neurodegenerative disorder affecting the senile population with manifestation of motor disability and cognitive impairment. Reactive oxygen species (ROS) is implicated in the progression of oxidative stress-related apoptosis and cell death of the midbrain dopaminergic neurons. Its interplay with mitochondrial functionality constitutes an important aspect of neuronal survival in the perspective of PD. Edible bird's nest (EBN) is an animal-derived natural food product made of saliva secreted by swiftlets from the Aerodamus genus. It contains bioactive compounds which might confer neuroprotective effects to the neurons. Hence this study aims to investigate the neuroprotective effect of EBN extracts in the neurotoxin-induced in vitro PD model.
    BMC Complementary and Alternative Medicine 10/2014; 14(1):391. DOI:10.1186/1472-6882-14-391 · 1.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Reinstalling the neurobiological circuits to effectively change the debilitating course of neurodegenerative diseases is of utmost importance. This reinstallation requires generation of new cells which are able to differentiate into specific types of neurons and modification of the local environment suitable for integration of these new neurons into the neuronal circuits. Allopregnanolone (APĪ±) seems to be involved in both of these processes, and therefore, is a potential neurotrophic agent. Loss of dopamine neurons in the substantia nigra (SN) is one of the main pathological features of Parkinson's and also in, at least, a subset of Alzheimer's patients. Therefore, reinstallation of the dopamine neurons in nigrostriatal tract is of unique importance for these neurodegenerative diseases. However, for the neurogenic status and the roles of allopregnanolone in the nigrostriatal tract, the evidence is accumulating and debating. This review summarizes recent studies regarding the neurogenic status in the nigrostriatal tract. Furthermore, special attention is placed on evidence suggesting that reductions in allopregnenalone levels are one of the major pathological features in PD and AD. This evidence has also been confirmed in brains of mice that were lesioned with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or those bearing neurodegenerative mutations. Lastly, we highlight studies showing that allopregnanalone can augment the number of total cells and dopaminergic neurons via peripheral exogenous administration.
    Frontiers in Cellular Neuroscience 08/2014; 8:224. DOI:10.3389/fncel.2014.00224 · 4.18 Impact Factor