Fluoxetine targets early progenitor cells in the adult brain.

Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 06/2006; 103(21):8233-8. DOI: 10.1073/pnas.0601992103
Source: PubMed

ABSTRACT Chronic treatment with antidepressants increases neurogenesis in the adult hippocampus. This increase in the production of new neurons may be required for the behavioral effects of antidepressants. However, it is not known which class of cells within the neuronal differentiation cascade is targeted by the drugs. We have generated a reporter mouse line, which allows identification and classification of early neuronal progenitors. It also allows accurate quantitation of changes induced by neurogenic agents in these distinct subclasses of neuronal precursors. We use this line to demonstrate that the selective serotonin reuptake inhibitor antidepressant fluoxetine does not affect division of stem-like cells in the dentate gyrus but increases symmetric divisions of an early progenitor cell class. We further demonstrate that these cells are the sole class of neuronal progenitors targeted by fluoxetine in the adult brain and suggest that the fluoxetine-induced increase in new neurons arises as a result of the expansion of this cell class. This finding defines a cellular target for antidepressant drug therapies.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Se reconoce que el ejercicio puede aumentar la neurogénesis adulta y este fenómeno podría evidenciarse en diferentes niveles (comportamental, celular, electrofisiológico). El objetivo del estudio fue evaluar el efecto de la estimulación de la neurogénesis hipocampal mediante el ejercicio, sobre la memoria de trabajo evaluada mediante una tarea de laberinto en T en ratas macho adultas de la sepa Wistar. Se utilizó un diseño experimental de dos grupos en el cual un grupo experimental GE (n = 12) fue sometido a un programa de ejercicio forzado durante 5 días, al mismo tiempo que se administró un marcador de síntesis de ADN (Bromo-deoxi-uridina [BrdU](50 mg/kg IP.), los animales control GC (n = 9) no fueron expuestos al ejercicio pero se les administró igual dosis de BrdU. Tres (3) animales (GE = 2; GC = 1) se sometieron a cirugía de implantación de electrodos en la corteza frontal medial (+3,0 mm AP; ± 0.5 mm ML; -3.0mm DV) e hipocampo (-3.0mm AP; ± 1.8mm ML; -3.5mm DV) para registro electroencefalográfico durante la ejecución en el laberinto en T. 6-8 semanas después de la aplicación del ejercicio se evaluó la memoria de trabajo en laberinto en T y se analizaron cuatro (4) días de elección evaluando la alternancia de las opciones como indicador de memoria de trabajo. No se encontró diferencia comportamental entre los grupos experimental y control en variables comportamentales (alternancia, índice de preferencia, tiempo de respuesta, tiempo de ensayo, consumo de comida). El registro electroencefalográfico de los animales no mostró una tendencia a la coherencia entre las áreas registradas, siendo éste un indicador fisiológico del proceso de elección. En cuanto a la cantidad de nuevas neuronas no se encontraron diferencias por grupos.
    12/2014, Degree: Master, Supervisor: Fernando Cardenas; Manuel Rojas
  • [Show abstract] [Hide abstract]
    ABSTRACT: Individuals with Down syndrome (DS), a genetic condition caused by triplication of chromosome 21, are characterized by intellectual disability and are prone to develop Alzheimer's disease (AD), due to triplication of the amyloid precursor protein (APP) gene. Recent evidence in the Ts65Dn mouse model of DS shows that enhancement of serotonergic transmission with fluoxetine during the perinatal period rescues neurogenesis, dendritic pathology and behavior, indicating that cognitive impairment can be pharmacologically restored. A crucial question is whether the short-term effects of early treatments with fluoxetine disappear at adult life stages. In the current study we found that hippocampal neurogenesis, dendritic pathology and hippocampus/amygdala-dependent memory remained in their restored state when Ts65Dn mice, which had been neonatally treated with fluoxetine, reached adulthood. Additionally, we found that the increased levels of the APP-derived βCTF peptide in adult Ts65Dn mice were normalized following neonatal treatment with fluoxetine. This effect was accompanied by restoration of endosomal abnormalities, a βCTF-dependent feature of DS and AD. While untreated adult Ts65Dn mice had reduced hippocampal levels of the 5-HT1A receptor (5-HT1A-R) and methyl-CpG-binding protein (MeCP2), a protein that promotes 5-HT1A-R transcription, in neonatally-treated mice both 5-HT1A-R and MeCP2 were normalized. In view of the crucial role of serotonin in brain development, these findings suggest that the enduring outcome of neonatal treatment with fluoxetine may be due to MeCP2-dependent restoration of the 5-HT1A-R. Taken together, results provide new hope for the therapy of DS, showing that early treatment with fluoxetine enduringly restores cognitive impairment and prevents early signs of AD-like pathology. Copyright © 2014. Published by Elsevier Inc.
    Neurobiology of Disease 12/2014; · 5.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Over the last decades, adult neurogenesis in the central nervous system (CNS) has emerged as a fundamental process underlying physiology and disease. Recent evidence indicates that the homeobox transcription factor Prox1 is a critical intrinsic regulator of neurogenesis in the embryonic CNS and adult dentate gyrus (DG) of the hippocampus, acting in multiple ways and instructed by extrinsic cues and intrinsic factors. In the embryonic CNS, Prox1 is mechanistically involved in the regulation of proliferation vs. differentiation decisions of neural stem cells (NSCs), promoting cell cycle exit and neuronal differentiation, while inhibiting astrogliogenesis. During the complex differentiation events in adult hippocampal neurogenesis, Prox1 is required for maintenance of intermediate progenitors (IPs), differentiation and maturation of glutamatergic interneurons, as well as specification of DG cell identity over CA3 pyramidal fate. The mechanism by which Prox1 exerts multiple functions involves distinct signaling pathways currently not fully highlighted. In this mini-review, we thoroughly discuss the Prox1-dependent phenotypes and molecular pathways in adult neurogenesis in relation to different upstream signaling cues and cell fate determinants. In addition, we discuss the possibility that Prox1 may act as a cross-talk point between diverse signaling cascades to achieve specific outcomes during adult neurogenesis.
    Frontiers in Cellular Neuroscience 01/2014; 8:454. · 4.18 Impact Factor


Available from