Article

NT-3 facilitates hippocampal plasticity and learning and memory by regulating neurogenesis.

Section on Neural Development and Plasticity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
Learning &amp Memory (Impact Factor: 4.38). 05/2006; 13(3):307-15. DOI: 10.1101/lm.76006
Source: PubMed

ABSTRACT In the adult brain, the expression of NT-3 is largely confined to the hippocampal dentate gyrus (DG), an area exhibiting significant neurogenesis. Using a conditional mutant line in which the NT-3 gene is deleted in the brain, we investigated the role of NT-3 in adult neurogenesis, hippocampal plasticity, and memory. Bromodeoxyuridine (BrdU)-labeling experiments demonstrated that differentiation, rather than proliferation, of the neuronal precursor cells (NPCs) was significantly impaired in DG lacking NT-3. Triple labeling for BrdU, the neuronal marker NeuN, and the glial marker GFAP indicated that NT-3 affects the number of newly differentiated neurons, but not glia, in DG. Field recordings revealed a selective impairment in long-term potentiation (LTP) in the lateral, but not medial perforant path-granule neuron synapses. In parallel, the NT-3 mutant mice exhibited deficits in spatial memory tasks. In addition to identifying a novel role for NT-3 in adult NPC differentiation in vivo, our study provides a potential link between neurogenesis, dentate LTP, and spatial memory.

Download full-text

Full-text

Available from: Brian Bates, Jun 30, 2015
0 Followers
 · 
91 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The neuropeptide VGF (non-acronymic), which has antidepressant-like effects, enhances adult hippocampal neurogenesis as well as synaptic activity and plasticity in the hippocampus, however the interaction between these processes and the mechanism underlying this regulation remain unclear. In this study, we demonstrate that VGF-derived peptide TLQP-62 specifically enhances the generation of early progenitor cells in nestin-GFP mice. Specifically, TLQP-62 significantly increases the number of Type 2a neural progenitor cells (NPCs) while reducing the number of more differentiated Type 3 cells. The effect of TLQP-62 on proliferation rather than differentiation was confirmed using NPCs in vitro; TLQP-62 but not scrambled peptide PEHN-62 increases proliferation in a cell line as well as in primary progenitors from adult hippocampus. Moreover, TLQP-62 but not scrambled peptide increases Cyclin D mRNA expression. The proliferation of NPCs induced by TLQP-62 requires synaptic activity, in particular through NMDA and metabotropic glutamate receptors. The activation of glutamate receptors by TLQP-62 activation induces phosphorylation of CaMKII through NMDA receptors and protein kinase D through metabotropic glutamate receptor 5 (mGluR5). Furthermore, pharmacological antagonists to CaMKII and PKD inhibit TLQP-62-induced proliferation of NPCs indicating that these signaling molecules downstream of glutamate receptors are essential for the actions of TLQP-62 on neurogenesis. We also show that TLQP-62 gradually activates Brain-Derived Neurotrophic Factor (BDNF)-receptor TrkB in vitro and that Trk signaling is required for TLQP-62-induced proliferation of NPCs. Understanding the precise molecular mechanism of how TLQP-62 influences neurogenesis may reveal mechanisms by which VGF-derived peptides act as antidepressant-like agents.
    Stem Cell Research 03/2014; 12(3):762-777. DOI:10.1016/j.scr.2014.03.005 · 3.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Adult neurogenesis in mammals is predominantly restricted to two brain regions, the dentate gyrus of the hippocampus and the olfactory bulb, suggesting that these two brain regions uniquely share functions that mediate its adaptive significance. Benefits of adult neurogenesis across these two regions appear to converge on increased neuronal and structural plasticity that subserves coding of novel, complex, and fine-grained information, usually with contextual components that include spatial positioning. By contrast, costs of adult neurogenesis appear to center on potential for dysregulation resulting in higher risk of brain cancer or psychological dysfunctions, but such costs have yet to be quantified directly. The three main hypotheses for the proximate functions and adaptive significance of adult neurogenesis, pattern separation, memory consolidation, and olfactory spatial, are not mutually exclusive and can be reconciled into a simple general model amenable to targeted experimental and comparative tests. Comparative analysis of brain region sizes across two major social-ecological groups of primates, gregarious (mainly diurnal haplorhines, visually-oriented, and in large social groups) and solitary (mainly noctural, territorial, and highly reliant on olfaction, as in most rodents) suggest that solitary species, but not gregarious species, show positive associations of population densities and home range sizes with sizes of both the hippocampus and olfactory bulb, implicating their functions in social-territorial systems mediated by olfactory cues. Integrated analyses of the adaptive significance of adult neurogenesis will benefit from experimental studies motivated and structured by ecologically and socially valid selective contexts.
    Frontiers in Neuroanatomy 07/2013; 7(21). DOI:10.3389/fnana.2013.00021 · 4.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The decision between cellular survival and death is governed by a balance between proapoptotic versus antiapoptotic signaling cascades. Growth factors are key actors, playing two main roles both at developmental and adult stages: a supporting antiapoptotic role through diverse actions converging in the mitochondria, and a promoter role of cell maturation and plasticity through dendritogenesis and synaptogenesis, especially relevant for the adult hippocampal neurogenesis, a case of development during adulthood. Here, both parallel roles mutually feed forward each other (the success in avoiding apoptosis lets the cell to grow and differentiate, which in turn lets the cell to reach new targets and form new synapses accessing new sources of growth factors to support cell survival) in a circular cause and consequence, or a "the chicken or the egg" dilemma. While identifying the first case of this dilemma makes no sense, one possible outcome might have biological relevance: the decision between survival and death in the adult hippocampal neurogenesis is mainly concentrated at a specific time window, and recent data suggest some divergences between the survival and the maturational promoter effect of growth factors. This review summarizes these evidences suggesting how growth factors might contribute to the live-or-die decision of adult-born immature granule neurons through influencing the maturation of the young neuron by means of its connectivity into a mature functional circuit.
    Ageing research reviews 06/2013; 12(3). DOI:10.1016/j.arr.2013.06.001 · 7.63 Impact Factor