Article

NT-3 facilitates hippocampal plasticity and learning and memory by regulating neurogenesis.

Section on Neural Development and Plasticity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
Learning &amp Memory (Impact Factor: 4.38). 05/2006; 13(3):307-15. DOI: 10.1101/lm.76006
Source: PubMed

ABSTRACT In the adult brain, the expression of NT-3 is largely confined to the hippocampal dentate gyrus (DG), an area exhibiting significant neurogenesis. Using a conditional mutant line in which the NT-3 gene is deleted in the brain, we investigated the role of NT-3 in adult neurogenesis, hippocampal plasticity, and memory. Bromodeoxyuridine (BrdU)-labeling experiments demonstrated that differentiation, rather than proliferation, of the neuronal precursor cells (NPCs) was significantly impaired in DG lacking NT-3. Triple labeling for BrdU, the neuronal marker NeuN, and the glial marker GFAP indicated that NT-3 affects the number of newly differentiated neurons, but not glia, in DG. Field recordings revealed a selective impairment in long-term potentiation (LTP) in the lateral, but not medial perforant path-granule neuron synapses. In parallel, the NT-3 mutant mice exhibited deficits in spatial memory tasks. In addition to identifying a novel role for NT-3 in adult NPC differentiation in vivo, our study provides a potential link between neurogenesis, dentate LTP, and spatial memory.

0 Followers
 · 
89 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The study described here investigated the effects of extracorporeal shock wave therapy (ESWT) on functional recovery and neurotrophin-3 expression in the spinal cord after sciatic nerve injury in rats. Forty-five 8-wk-old rats were used and randomly divided into three groups: An experimental group, a control group and a sham group. The experimental group received ESWT after the nerve-crushing damage. The sciatic functional index and Dartfish Software were used to determine the effect of sciatic nerve damage on functional changes. A 1-cm length of spinal cord encompassing the L4–6 level was removed for Western blot analysis. The sciatic functional index significantly changed in both the ESWT and control groups after impairment. In the time course evaluation of the ankle angle in the toe off, the ESWT group had statistically significant increases from day 21 onward. There was a significant difference in neurotrophin-3 expression between the groups on days 1, 7 and 14 after impairment. Early application of ESWT increased the expression of neurotrophin-3 and neurotrophin-3 mRNA, and daily therapy facilitated the activity of macrophages and Schwann cells, which affect the survival and regeneration of neurons.
    Ultrasound in Medicine & Biology 01/2015; 41(3). DOI:10.1016/j.ultrasmedbio.2014.10.015 · 2.10 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Interactions of adult neural stem cells (NSCs) with supportive vasculature appear critical for their maintenance and function, although the molecular details are still under investigation. Neurotrophin (NT)-3 belongs to the NT family of trophic factors, best known for their effects in promoting neuronal survival. Here we show that NT-3 produced and secreted by endothelial cells of brain and choroid plexus capillaries is required for the quiescence and long-term maintenance of NSCs in the mouse subependymal niche. Uptake of NT-3 from irrigating vasculature and cerebrospinal fluid (CSF) induces the rapid phosphorylation of endothelial nitric oxide (NO) synthase present in the NSCs, leading to the production of NO, which subsequently acts as a cytostatic factor. Our results identify a novel interaction between stem cells and vasculature/CSF compartments that is mediated by an unprecedented role of a neurotrophin and indicate that stem cells can regulate their own quiescence in response to endothelium-secreted molecules.
    Neuron 07/2014; 83(3). DOI:10.1016/j.neuron.2014.06.015 · 15.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Exposure to chronic stress produces negative effects on mood and hippocampus-dependent memory formation. SIRT2 alteration has been reported in mood disorders; however, the role of SIRT2 in depression remains unclear. Therefore, we aimed to determine whether SIRT2 can restore stress-induced suppression of neurogenesis in a rat chronic unpredictable stress (CUS) model of depression. Sucrose preference test, home-cage locomotion, forced swim test, and elevated plus maze were used to determine the role of SIRT2 in CUS model. To further determine the hippocampal neurogenesis contributes to the role of SIRT in mediating the antidepressant-like behavior, rats were exposed to X-irradiation to disrupt the process of hippocampal neurogenesis. CUS decreased expression of the SIRT2 protein in the hippocampus. Treatment with the antidepressant fluoxetine reversed the CUS-induced SIRT2 change. Furthermore, inhibiting SIRT2 by tenovin-D3 resulted in depression-like behaviors and impaired hippocampal neurogenesis in rats. Conversely, overexpression of SIRT2 by the intra-hippocampal infusion of recombinant adenovirus vector expressing mouse SIRT2 reversed the CUS-induced depressive-like behaviors, and promoted neurogenesis. Disrupting neurogenesis in the dentate gyrus by X-irradiation abolished the antidepressant-like effect of Ad-SIRT2-GFP. These findings indicate that hippocampal SIRT2 is involved in the modulation of depressant-like behaviors, possibly by regulating neurogenesis.
    Scientific Reports 02/2015; 5:8415. DOI:10.1038/srep08415 · 5.08 Impact Factor

Full-text (2 Sources)

Download
31 Downloads
Available from
May 15, 2014