Article

Development of an analytical method for the determination of anthracyclines in hospital effluents.

Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, Austria.
Chemosphere (Impact Factor: 3.14). 11/2006; 65(8):1419-25. DOI: 10.1016/j.chemosphere.2006.03.069
Source: PubMed

ABSTRACT Little is known about the fate of cytostatics after their elimination from humans into the environment. Being often very toxic compounds, their quantification in hospital effluents may be necessary to individualise the putative magnitude of pollution problems. We therefore developed a method for the determination of the very important group of anthracyclines (doxorubicin, epirubicin, and daunorubicin) in hospital effluents. Waste water samples were enriched by solid phase extraction (concentration factor 100), analysed by reversed-phase high performance liquid chromatography (RP-HPLC), and monitored by fluorescence detection. This method is reproducible and accurate within a range of 0.1-5 micro g l(-1) for all compounds (limits of quantification: 0.26-0.29 micro g l(-1) ; recoveries >80%). The applicability of the method was proven by chemical analysis of hospital sewage samples (range: 0.1-1.4 micro g l(-1) epirubicin and 0.1-0.5 micro g l(-1) doxorubicin). Obtained over a time period of one month, the results were in line with those calculated by an input-output model. These investigations show that the examined cytostatics are easily detectable and that the presented method is suitable to estimate the dimension of pharmaceutical contamination originating from hospital effluents.

0 Bookmarks
 · 
98 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Concerns about cytostatic anticancer drugs in the environment are increasing, mainly due to the lack of knowledge about the fate and impact of these cytotoxic compounds in the water cycle. In this context, the present work investigated the occurrence of 13 cytostatics and 4 metabolites in wastewater samples from various wastewater treatment plants (WWTPs) and from a large hospital from Spain. The target compounds belong to five different classes according to the Anatomical Therapeutic Classification (ATC), namely, alkylating agents, antimetabolites, plant alkaloids and other natural products, cytotoxic antibiotics and related substances, and other antineoplastic agents. Some of them have been classified as carcinogens in humans by the International Agency for Research on Cancer (IARC). These compounds were determined by an automated on line solid-phase extraction-liquid chromatography-tandem mass spectrometry (SPE-LC-MS/MS) method. Results showed the presence of methotrexate (MET), ifosfamide (IF), cyclophosphamide (CP), irinotecan (IRI), doxorubicin (DOX), capecitabine (CAP), tamoxifen (TAM) and the metabolites endoxifen (OH-D-TAM), hydroxytamoxifen (OH-TAM) and hydroxypaclitaxel (OH-PAC) at levels ranging from 2ngL(-1) (for MET) to 180ngL(-1) (for TAM). Some of these compounds were found to be efficiently removed after wastewater treatment, e.g. MET, DOX and IRI, whereas other compounds, such as TAM, CP and IF remained largely unaltered. The behaviour of the target compounds during the common filtration step of the water samples was also investigated with the finding that some compounds are strongly adsorbed to nylon filters, while cellulose acetate appears as the best choice for the filter material. The aquatic environmental risk associated to the detected compounds was also assessed. To the best of the authors' knowledge, this is the first report of the presence of the metabolites OH-D-TAM and OH-TAM in the water cycle.
    Science of The Total Environment 08/2014; 497-498C:68-77. · 3.16 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The occurrence of 26 commonly used cytostatic compounds in wastewaters was evaluated using an automated solid-phase extraction (SPE) method with liquid chromatography-high-resolution mass spectrometry (LC-HRMS). Detection was optimized using Oasis HLB SPE cartridges at pH 2. Two hospital effluents and their two receiving wastewater treatment plants were sampled over five days. In hospital effluents, eight cytostatics were detected at levels up to 86.2 μg L(-1) for ifosfamide, 4.72 μg L(-1) for cyclophosphamide, and 0.73 μg L(-1) for irinotecan, the three most relevant compounds identified. Cyclophosphamide and megestrol acetate were found in wastewaters at concentrations up to 0.22 μg L(-1) for the latter. The predicted environmental concentrations (PEC) in sewage effluents of ifosfamide (2.4-4.3 ng L(-1)), capecitabine (11.5-14.2 ng L(-1)), and irinotecan (0.4-0.6 ng L(-1)), calculated from consumption data in each hospital, published excretion values for the target compounds, and wastewater elimination rates, were in agreement with experimental values.
    Analytical and Bioanalytical Chemistry 05/2014; · 3.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A study on the fate of two antineoplastic drugs, methotrexate and doxorubicin, in the aquatic environment is presented. The investigation involved a study of their decomposition under dark experiments, homogeneous photolysis and heterogeneous photocatalysis using titanium dioxide, the identification of intermediate compounds, as well as the assessment of acute toxicity over time. The analysis were carried out using LC (ESI positive mode) coupled with LTQ-Orbitrap analyser; accurate mass-to-charge ratios of parent ions were reported with inaccuracy below 10mmu, which guarantee the correct assignment of their molecular formula in all cases, while their MS(2) and MS(3) spectra showed several structural-diagnostic ions that allowed to characterize the different transformation products and to discriminate the isobaric species. Fourteen and eight main species were identified subsequently to doxorubicin or methotrexate transformation. The major transformation processes for doxorubicin involved (poli)hydroxylation and/or oxidation of the molecule, or the detachment of the sugar moiety. Methotrexate transformation involved decarboxylation or the molecule cleavage. Acute toxicity measurements showed that not only the two drugs exhibit high toxicity, but also their initial transformation products are highly toxic.
    Journal of Chromatography A 08/2014; · 4.61 Impact Factor