Synthesis and enhancing effect of transkarbam 12 on the transdermal delivery of theophylline, clotrimazole, flobufen, and griseofulvin.

Department of Inorganic and Organic Chemistry, Faculty of Pharmacy, Charles University in Prague, Heyrovského 1203, 50012 Hradec Králové, Czech Republic.
Pharmaceutical Research (Impact Factor: 4.74). 06/2006; 23(5):912-9. DOI: 10.1007/s11095-006-9782-y
Source: PubMed

ABSTRACT Dodecyl-6-aminohexanoate (DDEAC) is a transdermal permeation enhancer with excellent activity, low toxicity, and no dermal irritation. We hypothesized that DDEAC reacts with air CO2 to form a two-chain ammonium carbamate--Transkarbam 12 (T12)--which is responsible for the enhancing effect.
DDEAC and T12 were synthesized, their structures were confirmed by spectral methods, and their enhancing activity was studied using the Franz diffusion cell and human skin. A high-performance liquid chromatography method was developed for determination of T12, and its biodegradability was evaluated using porcine esterase.
Only the carbamate salt T12 was responsible for the high enhancing activity; DDEAC tested under argon to avoid reaction with CO2 was inactive. T12 enhanced transdermal permeation of drugs covering a wide range of physicochemical properties, including theophylline (enhancement ratio up to 55.6), clotrimazole (7.7), flobufen (5.0), and griseofulvin (24). The activity was pH-dependent, further confirming the importance of the carbamate structure. The metabolization of T12 followed a second-order kinetics with t(1/2) = 31 min.
Our results indicate that T12 is a promising biodegradable permeation enhancer for a wide range of drugs, and the structurally novel group of carbamate enhancers warrants further investigation.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Transdermal permeation enhancers are compounds that temporarily increase drug flux through the skin by interacting with constituents of the stratum corneum. Transkarbam 12 (T12) is a highly active, broad-spectrum, biodegradable enhancer with low toxicity and low dermal irritation. We show here that T12 acts by a dual mechanism of action. The first part of this activity is associated with its ammonium carbamate polar head as shown by its pH-dependent effects on the permeation of two model drugs. Once this ammonium carbamate penetrates into the stratum corneum intercellular lipids, it rapidly decomposes releasing two molecules of protonated dodecyl 6-aminohexanoate (DDEAC) and carbon dioxide. This was observed by thermogravimetric analysis and infrared spectroscopy. This step of T12 action influences drug permeation through lipidic pathways, not through the aqueous pores (polar pathway) as shown by its effects on various model drugs and electrical impedance. Consequently, protonated DDEAC released in the stratum corneum is also an active enhancer. It broadens the scope of T12 action since it is also able to increase permeation of hydrophilic drugs that prefer the pore pathway. Thus, this dual effect of T12 is likely responsible for its favorable properties, which make it a good candidate for prospective clinical use.
    Journal of Controlled Release 11/2010; 150(2):164-70. · 7.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Acyclic nucleoside phosphonates possess unique antiviral and antineoplastic activities; however, their polar phosphonate moiety is associated with low ability to cross biological membranes. We explored the potential of transdermal and topical delivery of 2,6-diaminopurine derivative cPr-PMEDAP. In vitro diffusion of cPr-PMEDAP was investigated using formulations at different pH and concentration and with permeation enhancer through porcine and human skin. Ability of 0.1-5% cPr-PMEDAP to cross human skin barrier was very low with flux values ~40 ng/cm(2)/h, the majority of compound found in the stratum corneum. The highest permeation rates were found at pH 6; increased donor concentration had no influence. The permeation enhancer dodecyl 6-dimethylaminohexanoate (DDAK, 1%) increased flux of cPr-PMEDAP (up to 61 times) and its concentration in nucleated epidermis (up to ~0.5 mg of cPr-PMEDAP/g of the tissue). No deamination of cPr-PMEDAP into PMEG occurred during permeation studies, but N-dealkylation into PMEDAP mediated by skin microflora was observed. Transdermal or topical application of cPr-PMEDAP enabled by the permeation enhancer DDAK may provide an attractive alternative route of administration of this potent antitumor and antiviral compound.
    Pharmaceutical Research 06/2011; 28(12):3105-15. · 4.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The development in the field of pharmaceutical dosage forms results in the discovery of additional highly sophisticated drug delivery systems that allow maintaining a constant level of the active substance in an organism. Transdermal therapeutic systems are an excellent alternative to conventional pharmaceutical dosage forms. However, the application of transdermal drug delivery faces the problem of insufficient or no penetration of active pharmaceutical substances through the skin. This review article describes the possible fundamental mechanisms of penetration through the skin barrier and refers to the classification of skin penetration enhancers. Azone-like enhancers are considered in detail and classified according to their structure on the basis of medicinal chemistry approaches. The article also provides a review of original transdermal penetration enhancers prepared in our laboratory and discusses the relationship between the chemical structure of the described Azone analogues and their penetration activity (SAR/QSAR).
    Medicinal Research Reviews 09/2012; 32(5):907-47. · 9.58 Impact Factor