Article

The role of the basal ganglia in habit formation.

Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, TS-13, Bethesda, Maryland 20892, USA.
Nature reviews. Neuroscience (Impact Factor: 31.38). 07/2006; 7(6):464-76. DOI: 10.1038/nrn1919
Source: PubMed

ABSTRACT Many organisms, especially humans, are characterized by their capacity for intentional, goal-directed actions. However, similar behaviours often proceed automatically, as habitual responses to antecedent stimuli. How are goal-directed actions transformed into habitual responses? Recent work combining modern behavioural assays and neurobiological analysis of the basal ganglia has begun to yield insights into the neural basis of habit formation.

0 Bookmarks
 · 
142 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: This review presents state-of-the-art knowledge about the roles of the basal ganglia (BG) in action-selection, cognition, and motivation, and how this knowledge has been used to improve deep brain stimulation (DBS) treatment of neurological and psychiatric disorders. Such pathological conditions include Parkinson's disease, Huntington's disease, Tourette syndrome, depression, and obsessive-compulsive disorder. The first section presents evidence supporting current hypotheses of how the cortico-BG circuitry works to select motor and emotional actions, and how defects in this circuitry can cause symptoms of the BG diseases. Emphasis is given to the role of striatal dopamine on motor performance, motivated behaviors and learning of procedural memories. Next, the use of cutting-edge electrochemical techniques in animal and human studies of BG functioning under normal and disease conditions is discussed. Finally, functional neuroimaging studies are reviewed; these works have shown the relationship between cortico-BG structures activated during DBS and improvement of disease symptoms. Copyright © 2015. Published by Elsevier Ltd.
    Neuroscience & Biobehavioral Reviews 02/2015; DOI:10.1016/j.neubiorev.2015.02.003 · 10.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The basal ganglia are phylogenetically conserved subcortical nuclei necessary for coordinated motor action and reward learning. Current models postulate that the basal ganglia modulate cerebral cortex indirectly via an inhibitory output to thalamus, bidirectionally controlled by direct- and indirect-pathway striatal projection neurons (dSPNs and iSPNs, respectively). The basal ganglia thalamic output sculpts cortical activity by interacting with signals from sensory and motor systems. Here we describe a direct projection from the globus pallidus externus (GP), a central nucleus of the basal ganglia, to frontal regions of the cerebral cortex (FC). Two cell types make up the GP-FC projection, distinguished by their electrophysiological properties, cortical projections and expression of choline acetyltransferase (ChAT), a synthetic enzyme for the neurotransmitter acetylcholine (ACh). Despite these differences, ChAT(+) cells, which have been historically identified as an extension of the nucleus basalis, as well as ChAT(-) cells, release the inhibitory neurotransmitter GABA (γ-aminobutyric acid) and are inhibited by iSPNs and dSPNs of dorsal striatum. Thus, GP-FC cells comprise a direct GABAergic/cholinergic projection under the control of striatum that activates frontal cortex in vivo. Furthermore, iSPN inhibition of GP-FC cells is sensitive to dopamine 2 receptor signalling, revealing a pathway by which drugs that target dopamine receptors for the treatment of neuropsychiatric disorders can act in the basal ganglia to modulate frontal cortices.
    Nature 03/2015; DOI:10.1038/nature14179 · 42.35 Impact Factor
  • Source
    Nature Neuroscience 02/2015; 18(3):329-30. DOI:10.1038/nn.3959 · 14.98 Impact Factor

Full-text (2 Sources)

Download
111 Downloads
Available from
Sep 27, 2014