MRI of articular cartilage in OA: novel pulse sequences and compositional/functional markers.

Stanford University, USA.
Osteoarthritis and Cartilage (Impact Factor: 4.66). 02/2006; 14 Suppl A:A76-86. DOI: 10.1016/j.joca.2006.03.010
Source: PubMed

ABSTRACT Osteoarthritis (OA) is a leading cause of disability worldwide. Magnetic resonance imaging (MRI), with its unique ability to image and characterize soft tissue non-invasively, has proven valuable in assessing cartilage in OA. The development of new, fast imaging methods with high contrast show promise to improve the magnetic resonance (MR) evaluation of this disease. In addition to morphologic MRI methods, MRI contrast mechanisms under development may reveal detailed information about the physiology of cartilage. It is anticipated that these and other MRI techniques will play an increasingly important role in assessing the success or failure of therapies for OA. On December 5 and 6, 2002, OMERACT (Outcome Measures in Rheumatology Clinical Trials) and OARSI (Osteoarthritis Research Society International) held a workshop in Bethesda, MD aiming at providing a state-of-the-art review of imaging outcome measures for OA of the knee to help guide scientists and pharmaceutical companies in the use of MRI in multi-site studies of OA. Applications of MRI were initially reviewed by a multidisciplinary, international panel of expert scientists and physicians from academia, the pharmaceutical industry and regulatory agencies. The findings of the panel were then presented to a wider group of participants for open discussion. The following report summarizes the results of these discussions with respect to novel MRI pulse sequences for evaluating articular cartilage of the knee in OA and notes any additional advances that have been made since.

  • [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the effectiveness of quantitative Magnetic resonance imaging (MRI) for evaluating the quality of cartilage repair over time following allograft chondrocyte implantation using a three-dimensional scaffold for osteochondral lesions. Thirty knees from 15 rabbits were analyzed. An osteochondral defect (diameter, 4 mm; depth, 1 mm) was created on the patellar groove of the femur in both legs. The defects were filled with a chondrocyte-seeded scaffold in the right knee and an empty scaffold in the left knee. Five rabbits each were euthanized at 4, 8, and 12 weeks and their knees were examined via macroscopic inspection, histological and biochemical analysis, and quantitative MRI (T2 mapping and dGEMRIC) to assess the state of tissue repair following allograft chondrocyte implantation with a three-dimensional scaffold for osteochondral lesions. Comparatively good regenerative cartilage was observed both macroscopically and histologically. In both chondrocyte-seeded and control knees, the T2 values of repair tissues were highest at 4 weeks and showed a tendency to decrease with time. ΔR1 values of dGEMRIC also tended to decrease with time in both groups, and the mean ΔR1 was significantly lower in the CS-scaffold group than in the control group at all time points. ΔR1 = 1/r (R1post - R1pre), where r is the relaxivity of Gd-DTPA(2-), R1 = 1/T1 (longitudinal relaxation time). T2 mapping and dGEMRIC were both effective for evaluating tissue repair after allograft chondrocyte implantation. ΔR1 values of dGEMRIC represented good correlation with histologically and biochemically even at early stages after the implantation. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
    Osteoarthritis and Cartilage 11/2014; 23(2). DOI:10.1016/j.joca.2014.10.012 · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Identify and interrupt the vascular supply to portions of the distal femoral articular-epiphyseal cartilage complex (AECC) in goat kids to induce cartilage necrosis, characteristic of early lesions of osteochondrosis (OC); then utilize magnetic resonance imaging (MRI) to identify necrotic areas of cartilage. Distal femora were perfused and cleared in goat kids of various ages to visualize the vascular supply to the distal femoral AECC. Vessels located on the axial aspect of the medial femoral condyle (MFC) and on the abaxial side of the lateral trochlear ridge were transected in eight 4- to 5-day-old goats to induce cartilage necrosis. Goats were euthanized 1, 2, 3, 4, 5, 6, 9, and 10 weeks post operatively and operated stifles were harvested. Adiabatic T1ρ relaxation time maps of the harvested distal femora were generated using a 9.4 T MR scanner, after which samples were evaluated histologically. Interruption of the vascular supply to the MFC caused lesions of cartilage necrosis in 6/8 goat kids that were demonstrated histologically. Adiabatic T1ρ relaxation time mapping identified these areas of cartilage necrosis in 5/6 cases. No significant findings were detected after transection of perichondrial vessels supplying the lateral trochlear ridge. Cartilage necrosis, characteristic of early OC, can be induced by interrupting the vascular supply to the distal femoral AECC in goat kids. The ability of high field MRI to identify these areas of cartilage necrosis in the AECC using the adiabatic T1ρ sequence suggests that this technique may be useful in the future for the early diagnosis of OC. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
    Osteoarthritis and Cartilage 11/2014; 23(2). DOI:10.1016/j.joca.2014.11.009 · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective: The aim of the present study was to examine whether the degenerative and morphological changes of articular cartilage in early stage knee osteoarthritis (OA) occurred equally for both femoral- and tibial- or patellar- articular cartilage using magnetic resonance imaging (MRI)-based analyses. Design: This cross-sectional study was approved by the ethics committee of our university. Fifty patients with early stage painful knee OA were enrolled. The patients underwent 3.0 T MRI on the affected knee joint. Healthy volunteers who did not show MRI-based OA changes were also recruited as controls (n = 19). The degenerative changes of the articular cartilage were quantified by a T2 mapping analysis, and any structural changes were conducted using Whole Organ Magnetic Resonance Imaging Score (WORMS) technique. Results: All patients showed MRI-detected OA morphological changes. The T2 values of femoral condyle (FC) (P < 0.0001) and groove (P = 0.0001) in patients with early stage knee OA were significantly increased in comparison to those in the control, while no significant differences in the T2 values of patellar and tibial plateau (TP) were observed between the patients and the control. The WORMS cartilage and osteophyte scores of the femoral articular cartilage were significantly higher than those in the patellar- (P = 0.001 and P = 0.007, respectively) and tibial- (P = 0.0001 and P < 0.0001, respectively) articular cartilage in the patients with early stage knee OA. Conclusions: The degradation and destruction of the femoral articular cartilage demonstrated a greater degree of deterioration than those of the tibial- and patellar- articular cartilage in patients with early stage knee OA.
    Osteoarthritis and Cartilage 10/2014; 22(10):1583-9. DOI:10.1016/j.joca.2014.07.021 · 4.66 Impact Factor