Article

Preliminary evidence of reduced occipital GABA concentrations in puerperal women: a 1H-MRS study.

Department of Psychiatry, Yale University School of Medicine, and Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT 06519, USA.
Psychopharmacology (Impact Factor: 3.99). 07/2006; 186(3):425-33. DOI: 10.1007/s00213-006-0313-7
Source: PubMed

ABSTRACT Childbirth is associated with rapid neuroendocrine fluctuations, which are thought to contribute to the phatogenesis of postpartum major depression (PPD).
The aim of this proton magnetic resonance spectroscopy (1H-MRS) study was two-fold; 1) to examine whether puerperium is associated with alterations in occipital cortex gamma-aminobutyric acid (GABA) concentrations and 2) to determine whether such alterations may be more prominent in women with PPD.
Nine women with PPD, 14 postpartum healthy controls, and ten healthy follicular phase females underwent 1H-MRS at 2.1 Tesla to measure occipital cortex GABA concentrations. Postpartum women were scanned within 6 months of delivery and prior to resumption of menstruation. Healthy non-puerperal controls, drawn from a historical sample, were scanned during the early to mid-follicular phase when ovarian hormone levels would be similar to those found in the puerperium. GABA data were analyzed using analysis of covariance, and regression models were used to explore the relationship between cortical GABA concentrations and blood levels of estradiol, progesterone, and neurosteroids.
Cortical GABA and plasma allopregnanolone (ALLO) concentrations were reduced in both groups of postpartum women, regardless of PPD diagnosis, compared to healthy follicular phase women. There was no correlation between cortical GABA concentrations and estradiol, progesterone, ALLO, or pregnenolone (PREG).
This study is the first to describe reductions in occipital cortex GABA levels in the postpartum period, a time of increased vulnerability to mood disturbances in women. The concomitant reduction in peripheral ALLO levels provides further evidence of alterations in the balance between cortical excitation and inhibition during the puerperium. Women with PPD may represent a subgroup of women who fail to adequately adapt to this alteration in the neuroendocrine milieu.

0 Bookmarks
 · 
71 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Adolescent depression results in severe and protracted suffering for affected individuals and their family members, but the underlying mechanism of this disabling condition remains unclear.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The anterior cingulate cortex (ACC), consisting of the perigenual ACC (pgACC) and mid-ACC (i.e., affective and cognitive areas, respectively), plays a significant role in the performance of gambling tasks, which are used to measure decision-making behavior under conditions of risk. Although recent neuroimaging studies have suggested that the γ-aminobutyric acid (GABA) concentration in the pgACC is associated with decision-making behavior, knowledge regarding the relationship of GABA concentrations in subdivisions of the ACC with gambling task performance is still limited. The aim of our magnetic resonance spectroscopy study is to investigate in 20 healthy males the relationship of concentrations of GABA and glutamate+glutamine (Glx) in the pgACC, mid-ACC, and occipital cortex (OC) with multiple indexes of decision-making behavior under conditions of risk, using the Cambridge Gambling Task (CGT). The GABA/creatine (Cr) ratio in the pgACC negatively correlated with delay aversion score, which corresponds to the impulsivity index. The Glx/Cr ratio in the pgACC negatively correlated with risk adjustment score, which is reported to reflect the ability to change the amount of the bet depending on the probability of winning or losing. The scores of CGT did not significantly correlate with the GABA/Cr or Glx/Cr ratio in the mid-ACC or OC. Results of this study suggest that in the pgACC, but not in the mid-ACC or OC, GABA and Glx concentrations play a distinct role in regulating impulsiveness and risk probability during decision-making behavior under conditions of risk, respectively. Copyright © 2015. Published by Elsevier Inc.
    NeuroImage 01/2015; 109. DOI:10.1016/j.neuroimage.2015.01.014 · 6.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sex hormones have been implicated in neurite outgrowth, synaptogenesis, dendritic branching, myelination and other important mechanisms of neural plasticity. Here we review the evidence from animal experiments and human studies reporting interactions between sex hormones and the dominant neurotransmitters, such as serotonin, dopamine, GABA and glutamate. We provide an overview of accumulating data during physiological and pathological conditions and discuss currently conceptualized theories on how sex hormones potentially trigger neuroplasticity changes through these four neurochemical systems. Many brain regions have been demonstrated to express high densities for estrogen- and progesterone receptors, such as the amygdala, the hypothalamus, and the hippocampus. As the hippocampus is of particular relevance in the context of mediating structural plasticity in the adult brain, we put particular emphasis on what evidence could be gathered thus far that links differences in behavior, neurochemical patterns and hippocampal structure to a changing hormonal environment. Finally, we discuss how physiologically occurring hormonal transition periods in humans can be used to model how changes in sex hormones influence functional connectivity, neurotransmission and brain structure in vivo.
    Frontiers in Neuroscience 02/2015; 9:37. DOI:10.3389/fnins.2015.00037