In vivo imaging using bioluminescence: a tool for probing graft-versus-host disease.

Department of Medicine, Center for Clinical Research Building, 269 West Campus Drive, Stanford University, Stanford, California 94305, USA.
Nature reviews. Immunology (Impact Factor: 33.84). 07/2006; 6(6):484-90. DOI: 10.1038/nri1879
Source: PubMed

ABSTRACT Immunological reactions have a key role in health and disease and are complex events characterized by coordinated cell trafficking to specific locations throughout the body. Clarification of these cell-trafficking events is crucial for improving our understanding of how immune reactions are initiated, controlled and recalled. As we discuss here, an emerging modality for revealing cell trafficking is bioluminescence imaging, which harnesses the light-emitting properties of enzymes such as luciferase for quantification of cells and uses low-light imaging systems. This strategy could be useful for the study of a wide range of biological processes, such as the pathophysiology of graft-versus-host and graft-versus-leukaemia reactions.


Available from: Christopher H Contag, Jun 08, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bioluminescence imaging (BLI) has advantages for investigating biological phenomena in deep tissues of living animals, but few design strategies are available for functional bioluminescent substrates. We propose a new design strategy (designated as bioluminescent enzyme-induced electron transfer: BioLeT) for luciferin-based bioluminescence probes. Luminescence measurements of a series of aminoluciferin (AL) derivatives confirmed that bioluminescence can be controlled by means of BioLeT. Based on this concept, we developed bioluminescence probes for nitric oxide (NO) that enabled quantitative and sensitive detection even in vivo. Our design strategy should be applicable to develop a wide range of practically useful bioluminogenic probes.
    Journal of the American Chemical Society 03/2015; 137(12). DOI:10.1021/ja511014w · 11.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In allogeneic transplantation, including the B6 anti-BALB.B settings, H60 and H4 are two representative dominant minor histocompatibility antigens that induce strong CD8 T-cell responses. With different distribution patterns, H60 expression is restricted to hematopoietic cells, whereas H4 is ubiquitously expressed. H60-specific CD8 T-cell response has been known to be dominant in most cases of B6 anti-BALB.B allo-responses, except in the case of skin transplantation. To understand the mechanism underlying the subdominance of H60 during allogeneic skin transplantation, we investigated the dynamics of the H60-specific CD8 T cells in B6 mice transplanted with allogeneic BALB.B tail skin. Unexpectedly, longitudinal bioluminescence imaging and flow cytometric analyses revealed that H60-specific CD8 T cells were not always subdominant to H4-specific cells but instead showed a brief dominance before the H4 response became predominant. H60-specific CD8 T cells could expand in the draining lymph node and migrate to the BALB.B allografts, indicating their active participation in the anti-BALB.B allo-response. Enhancing the frequencies of H60-reactive CD8 T cells prior to skin transplantation reversed the immune hierarchy between H60 and H4. Additionally, H60 became predominant when antigen presentation was limited to the direct pathway. However, when antigen presentation was restricted to the indirect pathway, the expansion of H60-specific CD8 T cells was limited, whereas H4-specific CD8 T cells expanded significantly, suggesting that the temporary immunodominance and eventual subdominance of H60 could be due to their reliance on the direct antigen presentation pathway. These results enhance our understanding of the immunodominance phenomenon following allogeneic tissue transplantation.
    Experimental and Molecular Medicine 02/2015; 47(2). DOI:10.1038/emm.2014.107 · 2.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Red-shifted bioluminescent emitters allow improved in vivo tissue penetration and signal quantification, and have led to the development of beetle luciferin analogues that elicit red-shifted bioluminescence with firefly luciferase (Fluc). However, unlike natural luciferin, none have been shown to emit different colors with different luciferases. We have synthesized and tested the first dual-color, far-red to near-infrared (nIR) emitting analogue of beetle luciferin, which, akin to natural luciferin, exhibits pH dependent fluorescence spectra and emits bioluminescence of different colors with different engineered Fluc enzymes. Our analogue produces different far-red to nIR emission maxima up to λmax=706 nm with different Fluc mutants. This emission is the most red-shifted bioluminescence reported without using a resonance energy transfer acceptor. This improvement should allow tissues to be more effectively probed using multiparametric deep-tissue bioluminescence imaging.
    Angewandte Chemie 11/2014; 54(6). DOI:10.1002/ange.201405955