Article

Uehara, T. et al. S-Nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature 441, 513-517

Center for Neuroscience and Aging, Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, California 92037, USA.
Nature (Impact Factor: 42.35). 06/2006; 441(7092):513-7. DOI: 10.1038/nature04782
Source: PubMed

ABSTRACT Stress proteins located in the cytosol or endoplasmic reticulum (ER) maintain cell homeostasis and afford tolerance to severe insults. In neurodegenerative diseases, several chaperones ameliorate the accumulation of misfolded proteins triggered by oxidative or nitrosative stress, or of mutated gene products. Although severe ER stress can induce apoptosis, the ER withstands relatively mild insults through the expression of stress proteins or chaperones such as glucose-regulated protein (GRP) and protein-disulphide isomerase (PDI), which assist in the maturation and transport of unfolded secretory proteins. PDI catalyses thiol-disulphide exchange, thus facilitating disulphide bond formation and rearrangement reactions. PDI has two domains that function as independent active sites with homology to the small, redox-active protein thioredoxin. During neurodegenerative disorders and cerebral ischaemia, the accumulation of immature and denatured proteins results in ER dysfunction, but the upregulation of PDI represents an adaptive response to protect neuronal cells. Here we show, in brains manifesting sporadic Parkinson's or Alzheimer's disease, that PDI is S-nitrosylated, a reaction transferring a nitric oxide (NO) group to a critical cysteine thiol to affect protein function. NO-induced S-nitrosylation of PDI inhibits its enzymatic activity, leads to the accumulation of polyubiquitinated proteins, and activates the unfolded protein response. S-nitrosylation also abrogates PDI-mediated attenuation of neuronal cell death triggered by ER stress, misfolded proteins or proteasome inhibition. Thus, PDI prevents neurotoxicity associated with ER stress and protein misfolding, but NO blocks this protective effect in neurodegenerative disorders through the S-nitrosylation of PDI.

Download full-text

Full-text

Available from: Yasuyuki Nomura, May 09, 2015
0 Followers
 · 
240 Views
  • Source
    • "Significant loss in PDI function due to NO-mediated S-nitrosylation causes dysregulated protein folding and accumulation of polyubiquitinated proteins leading to neuronal death via ER stress. This was backed up by the fact that S-nitrosylated PDI was found in neurodegenerative diseased brains suggesting ER dysfunction as critical factor that relates NOinduced cellular stress to neurodegeneration (Uehara et al., 2006). Chen et al. (2013) "
    [Show abstract] [Hide abstract]
    ABSTRACT: Execution of fundamental cellular functions demands regulated protein folding homeostasis. Endoplasmic reticulum (ER) is an active organelle existing to implement this function by folding and modifying secretory and membrane proteins. Loss of protein folding homeostasis is central to various diseases and budding evidences suggest ER stress as being a major contributor in the development or pathology of a diseased state besides other cellular stresses. The trigger for diseases may be diverse but, inflammation and/or ER stress may be basic mechanisms increasing the severity or complicating the condition of the disease. Chronic ER stress and activation of the unfolded-protein response (UPR) through endogenous or exogenous insults may result in impaired calcium and redox homeostasis, oxidative stress via protein overload thereby also influencing vital mitochondrial functions. Calcium released from the ER augments the production of mitochondrial Reactive Oxygen Species (ROS). Toxic accumulation of ROS within ER and mitochondria disturbs fundamental organelle functions. Sustained ER stress is known to potentially elicit inflammatory responses via UPR pathways. Additionally, ROS generated through inflammation or mitochondrial dysfunction could accelerate ER malfunction. Dysfunctional UPR pathways have been associated with a wide range of diseases including several neurodegenerative diseases, stroke, metabolic disorders, cancer, inflammatory disease, diabetes mellitus, cardiovascular disease, and others. In this review, we have discussed the UPR signaling pathways, and networking between ER stress-induced inflammatory pathways, oxidative stress, and mitochondrial signaling events, which further induce or exacerbate ER stress.
    Frontiers in Cellular Neuroscience 07/2014; 8:213. DOI:10.3389/fncel.2014.00213 · 4.18 Impact Factor
  • Source
    • "Human embryonic kidney (HEK) 293T, HEK293 cells stably expressing neuronal NOS, cerebrocortical neurons, and adult NSCs were cultured as previously described (Gage et al., 1995; Palmer et al., 1997; Okamoto et al., 2002; Uehara et al., 2006). For details on assays for apoptosis and cell differentiation , see the Supplemental Experimental Procedures. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Redox-mediated posttranslational modifications represent a molecular switch that controls major mechanisms of cell function. Nitric oxide (NO) can mediate redox reactions via S-nitrosylation, representing transfer of an NO group to a critical protein thiol. NO is known to modulate neurogenesis and neuronal survival in various brain regions in disparate neurodegenerative conditions. However, a unifying molecular mechanism linking these phenomena remains unknown. Here, we report that S-nitrosylation of myocyte enhancer factor 2 (MEF2) transcription factors acts as a redox switch to inhibit both neurogenesis and neuronal survival. Structure-based analysis reveals that MEF2 dimerization creates a pocket, facilitating S-nitrosylation at an evolutionally conserved cysteine residue in the DNA binding domain. S-Nitrosylation disrupts MEF2-DNA binding and transcriptional activity, leading to impaired neurogenesis and survival in vitro and in vivo. Our data define a molecular switch whereby redox-mediated posttranslational modification controls both neurogenesis and neurodegeneration via a single transcriptional signaling cascade.
  • Source
    • "A key step in this process is substrate ubiquitination that targets ER proteins for retrotranslocation to the cytosol and subsequent proteasomal degradation (Nakatsukasa et al, 2008). We hypothesized that changes in PDI chaperone and enzymatic activity could lead to the accumulation of unfolded and ubiquitinated proteins (Uehara et al, 2006). We analyzed the accumulation of ubiquitinated proteins in WT and Txnip-KO MEFs with and without subjecting them to ER stress through tunicamycin (Fig 5A, "
    [Show abstract] [Hide abstract]
    ABSTRACT: The endoplasmic reticulum (ER) is responsible for protein folding, modification, and trafficking. Accumulation of unfolded or misfolded proteins represents the condition of ER stress and triggers the unfolded protein response (UPR), a key mechanism linking supply of excess nutrients to insulin resistance and type 2 diabetes in obesity. The ER harbors proteins that participate in protein folding including protein disulfide isomerases (PDIs). Changes in PDI activity are associated with protein misfolding and ER stress. Here, we show that thioredoxin-interacting protein (Txnip), a member of the arrestin protein superfamily and one of the most strongly induced proteins in diabetic patients, regulates PDI activity and UPR signaling. We found that Txnip binds to PDIs and increases their enzymatic activity. Genetic deletion of Txnip in cells and mice led to increased protein ubiquitination and splicing of the UPR regulated transcription factor X-box-binding protein 1 (Xbp1s) at baseline as well as under ER stress. Our results reveal Txnip as a novel direct regulator of PDI activity and a feedback mechanism of UPR signaling to decrease ER stress.
    EMBO Molecular Medicine 05/2014; 6(6). DOI:10.15252/emmm.201302561 · 8.25 Impact Factor
Show more