Inhibition of in vivo angiogenesis by N-β-alanyl-5-S-glutathionyl-3,4-dihydroxyphenylalanine

Natori Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
European Journal of Pharmacology (Impact Factor: 2.53). 07/2006; 539(3):151-7. DOI: 10.1016/j.ejphar.2006.03.084
Source: PubMed


N-beta-alanyl-5-S-glutathionyl-3,4-dihydroxyphenylalanine (5-S-GAD), an antibacterial substance isolated from the flesh fly, inhibits human tumor growth in the nude mice model; however, the mechanism of its action is unclear. The in vivo antitumor effect includes the inhibition of tumor cell proliferation and suppression of angiogenesis. Angiogenesis is essential for tumor growth in vivo. In this study, we examined whether 5-S-GAD inhibits tumor cell-induced angiogenesis by performing the mouse dorsal air sac assay. We found that intraperitoneal administration of 5-S-GAD inhibited the angiogenesis induced by S180 mouse sarcoma cells. Furthermore, 5-S-GAD also inhibited vascular endothelial growth factor-induced angiogenesis in the Matrigel plug assay and embryonic angiogenesis in the chick embryo chorioallantoic membrane assay. However, 5-S-GAD did not show any effect on the proliferation, migration, and tube formation of vascular endothelial cells. These results provide the first evidence that a bioactive substance derived from the flesh fly has antiangiogenic activity in vivo, although the mechanisms involved could not be explained.

6 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: N-β-Alanyl-5-S-glutathionyl-3,4-dihydroxyphenylalanine (5-S-GAD), an insect-derived antibacterial peptide, generates hydrogen peroxide (H2O2) that exerts antitumour activity. We have investigated the precise mechanism of H2O2 production from 5-S-GAD by autoxidation aiming to understand its action toward tumour cells. Using the electron spin resonance (ESR) technique, we detected a strong signal due to radical formation from 5-S-GAD. Surprisingly, the ESR signal of the radical derived from 5-S-GAD appeared after incubation for 30 min at 37°C in the buffer at pH 7.4; the signal was persistently detected for 10 h in the absence of catalytic metal ions. The computer simulation of the observed ESR spectrum together with the theoretical calculation of the spin density of the radical species indicates that an o-semiquinone radical anion was formed from 5-S-GAD. We demonstrated that H2O2 is produced via the formation of superoxide anion () by the electron-transfer reduction of molecular oxygen by the 5-S-GAD anion, which is in equilibrium with 5-S-GAD in the aqueous solution. The radical formation and the subsequent H2O2 production were inhibited by superoxide dismutase (SOD), when the antitumour activity of 5-S-GAD was inhibited by SOD. Thus, the formation of the o-semiquinone radical anion would be necessary for the antitumour activity of 5-S-GAD as an intermediate in the production of cytotoxic H2O2.
    Journal of Biochemistry 08/2007; 142(1):41-8. DOI:10.1093/jb/mvm101 · 2.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Insect produce wide range of protein and peptides as a first fast defense line against pathogen infection. These agents act in different ways including insect immune system activation or by direct impact on the target tumor cells or viruses. It has been shown that some of the insect peptides suppress viral gene and protein expression, rybosilate DNA, whereas others cause membrane lysis, induce apoptosis or arrest cell cycle. Several of the purified and characterized peptides of insect origin are very promising in treating of serious human diseases like human immunodeficiency virus (HIV), herpex simplex virus (HSV) or leukaemia. However, some obstacles need to be overcome. Cytotoxic activity of peptides, susceptibility to proteases or high cost of production remain still unsolved problems. Reports on the peptides antiviral and antitumour mechanisms are scanty. Thus, in this review we present characteristic, mode of action and potential medical applications of insects origin peptides with the antiviral and antitumour activity.
    Protein and Peptide Letters 02/2008; 15(6):578-85. DOI:10.2174/092986608784966912 · 1.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Preceded by three decades of intense basic research on tumour angiogenesis, we are assisting to the translation of anti-antiangiogenic therapies as medical oncologists are increasingly using pioneering anti-angiogenic drugs in combination with standard treatments. While basic knowledge in the field of angiogenesis is reaching maturity and our level of understanding of the complex process of vessel development and growth in health and disease has been enriched at the molecular and cellular levels, the translation of this knowledge to the clinic is still in its infancy. Identifying the most suitable drugs, and the optimal dosage and schedule, as well as monitoring patients' responses to anti-angiogenic therapy, remain challenging issues that currently limit the benefit of this new therapeutic approach in cancer. This review will focus on a comprehensive description of the experimental assays in which angiogenesis research has been founded and how the different assays complement and provide relevant information for the task of characterising the angiogenic properties of diverse tumours, giving us a variety of tools to follow up tumour angiogenesis in research models. Following up tumour angiogenesis in patients and their response to antiangiogenic therapy is a more challenging task that will benefit in the near future from the use of non-invasive imaging methods as well as molecular and cellular biomarkers of angiogenesis suitable for clinical oncology. As both the design of the anti-angiogenic therapies and monitoring of the response are improved in the coming years to properly tailor them to the angiogenic profile of every patient, we hope to achieve increasing response and benefit of including antiangiogenic drugs as standard in cancer therapy.
    Clinical and Translational Oncology 09/2008; 10(8):468-77. DOI:10.1007/s12094-008-0235-4 · 2.08 Impact Factor
Show more