Article

High pesticide exposure events among farmers and spouses enrolled in the Agricultural Health Study.

Occupational and Environmental Epidemiology Branch, National Cancer Institute, USA.
Journal of agricultural safety and health 06/2006; 12(2):101-16. DOI: 10.13031/2013.20385
Source: PubMed

ABSTRACT We completed a nested case-control analysis of factors associated with reporting a high pesticide exposure event (HPEE) by pesticide applicators and spouses during the five years since enrollment in the Agricultural Health Study (AHS). Cases and controls were identified from the 16,415 private pesticide applicators and 14,045 spouses with completed five-year follow-up interviews as of October 2000. Among the applicators, 306 cases with at least one HPEE in the five years since enrollment and 612 controls, randomly selected from those without a reported HPEE, were identified for analysis. Among the spouses, 63 cases were identified and 126 controls were selected. Risk for a new HPEE was increased among applicators reporting at enrollment ever having an HPEE with an odds ratio (OR) of 3.8 (95% CI: 2.7, 5.3). Compared to applicators who applied pesticides fewer than 5 days per year, the ORs ranged from 1.4 (95% CI: 0.9, 2.2) for 6 to 10 days per year to 2.2 (95% CI: 1.4, 3.6) for more than 20 application days per year. The incidence of HPEE among Iowa applicators was much greater (8.8/1000 applicators) than among North Carolina applicators (2.0/1000). Spouses reported fewer HPEEs compared to applicators (2/1000 spouses). Overall, the observed risk factors for new HPEEs among applicators are similar to risk factors observed in previous cross-sectional analyses of HPEE history. Further, only 13% of applicators and 22% of spouses with symptoms resulting from HPEE sought medical care, suggesting that pesticide poisoning surveillance data may seriously underreport the frequency of such events.

0 Bookmarks
 · 
59 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Farmwork is one of the most hazardous occupations for men and women. Research suggests sex/gender shapes hazardous workplace exposures and outcomes for farmworkers. This paper reviews the occupational health literature on farmworkers, assessing how gender is treated and interpreted in exposure-outcome studies.Methods The paper evaluates peer-reviewed articles on men and women farmworkers' health published between 2000 and 2012 in PubMed or SCOPUS. Articles were identified and analyzed for approaches toward sampling, data analysis, and use of exposure indicators in relation to sex/gender.Results18% of articles reported on and interpreted sex/gender differences in health outcomes and exposures. Sex/gender dynamics often shaped health outcomes, yet adequate data was not collected on established sex/gender risk factors relating to study outcomes.Conclusion Research can better incorporate sex/gender analysis into design, analytical and interpretive approaches to better explore its mediation of health outcomes in light of emerging calls to mainstream gender research. Am. J. Ind. Med. 9999:1–24, 2014. © 2014 The Authors. American Journal of Industrial Medicine Published by Wiley Periodicals, Inc. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
    American Journal of Industrial Medicine 09/2014; · 1.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The objective of this study was to explore work-related risk factors of acute occupational pesticide poisoning among male farmers according to the severity of the poisoning. A nationwide sampling survey of male farmers was conducted in South Korea in 2011. A total of 1,958 male farmers were interviewed. Severity of occupational pesticide poisoning in 2010 was evaluated according to symptoms, types of treatment, and number of pesticide poisoning incidents per individual. A multinomial logistic regression model was used to estimate the odds ratio with 95% confidence intervals for risk factors of acute occupational pesticide poisoning. We found that the risk of acute occupational pesticide poisoning increased with lifetime days of pesticide application (OR = 1.74; 95% CI = 1.32-2.29), working a farm of three or more acres in size (OR = 1.49), not wearing personal protective equipment such as gloves (OR = 1.29) or masks (OR = 1.39). Those who engaged in inappropriate work behaviors such as not following pesticide label instructions (OR = 1.61), applying the pesticide in full sun (OR = 1.48), and applying the pesticide upwind (OR = 1.54) had a significantly increased risk of pesticide poisoning. There was no significant risk difference by type of farming. In addition, the magnitude of these risk factors did not differ significantly by severity of acute pesticide poisoning. In fact, our findings suggest that work-related risk factors contributed to the development of acute occupational pesticide poisoning without relation to its severity. Therefore, prevention strategies for reducing occupational pesticide poisoning, regardless of severity, should be recommended to all types of farming and the level of poisoning severity.
    International Journal of Environmental Research and Public Health 03/2013; 10(3):1100-1112. · 1.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: IPSIM (Injury Profile SIMulator) is a generic modelling framework presented in a companion paper. It aims at predicting a crop injury profile as a function of cropping practices and abiotic and biotic environment. IPSIM's modelling approach consists of designing a model with an aggregative hierarchical tree of attributes. In order to provide a proof of concept, a model, named IPSIM-Wheat-Eyespot, has been developed with the software DEXi according to the conceptual framework of IPSIM to represent final incidence of eyespot on wheat. This paper briefly presents the pathosystem, the method used to develop IPSIM-Wheat-Eyespot using IPSIM's modelling framework, simulation examples, an evaluation of the predictive quality of the model with a large dataset (526 observed site-years) and a discussion on the benefits and limitations of the approach. IPSIM-Wheat-Eyespot proved to successfully represent the annual variability of the disease, as well as the effects of cropping practices (Efficiency = 0.51, Root Mean Square Error of Prediction = 24%; bias = 5.0%). IPSIM-Wheat-Eyespot does not aim to precisely predict the incidence of eyespot on wheat. It rather aims to rank cropping systems with regard to the risk of eyespot on wheat in a given production situation through ex ante evaluations. IPSIM-Wheat-Eyespot can also help perform diagnoses of commercial fields. Its structure is simple and permits to combine available knowledge in the scientific literature (data, models) and expertise. IPSIM-Wheat-Eyespot is now available to help design cropping systems with a low risk of eyespot on wheat in a wide range of production situations, and can help perform diagnoses of commercial fields. In addition, it provides a proof of concept with regard to the modelling approach of IPSIM. IPSIM-Wheat-Eyespot will be a sub-model of IPSIM-Wheat, a model that will predict injury profile on wheat as a function of cropping practices and the production situation.
    PLoS ONE 01/2013; 8(10):e75829. · 3.53 Impact Factor