Article

Differential cerebral activation during observation of expressive gestures and motor acts

Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Germany.
Neuropsychologia (Impact Factor: 3.45). 02/2006; 44(10):1787-95. DOI: 10.1016/j.neuropsychologia.2006.03.016
Source: PubMed

ABSTRACT We compared brain activation involved in the observation of isolated right hand movements (e.g. twisting a lid), body-referred movements (e.g. brushing teeth) and expressive gestures (e.g. threatening) in 20 healthy subjects by using functional magnetic resonance imaging (fMRI). Perception-related areas in the occipital and inferior temporal lobe but also the mirror neuron system in the lateral frontal (ventral premotor cortex and BA 44) and superior parietal lobe were active during all three conditions. Observation of body-referred compared to common hand actions induced increased activity in the bilateral posterior superior temporal sulcus (STS), the left temporo-parietal lobe and left BA 45. Expressive gestures involved additional areas related to social perception (bilateral STS, temporal poles, medial prefrontal lobe), emotional processing (bilateral amygdala, bilateral ventrolateral prefrontal cortex (VLPFC), speech and language processing (Broca's and Wernicke's areas) and the pre-supplementary motor area (pre-SMA). In comparison to body-referred actions, expressive gestures evoked additional activity only in the left VLPFC (BA 47). The valence-ratings for expressive gestures correlated significantly with activation intensity in the VLPFC during expressive gesture observation. Valence-ratings for negative expressive gestures correlated with right STS-activity. Our data suggest that both, the VLPFC and the STS are coding for differential emotional valence during the observation of expressive gestures.

Download full-text

Full-text

Available from: Ralf Veit, Jul 07, 2015
0 Followers
 · 
261 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Modern neuroimaging developments have demonstrated that cognitive functions correlate with brain networks rather than specific areas. The purpose of this paper was to analyze the connectivity of Broca's area based on language tasks. A connectivity modeling study was performed by pooling data of Broca's activation in language tasks. Fifty-seven papers that included 883 subjects in 84 experiments were analyzed. Analysis of Likelihood Estimates of pooled data was utilized to generate the map; thresholds at p < 0.01 were corrected for multiple comparisons and false discovery rate. Resulting images were co-registered into MNI standard space. A network consisting of 16 clusters of activation was obtained. Main clusters were located in the frontal operculum, left posterior temporal region, supplementary motor area, and the parietal lobe. Less common clusters were seen in the sub-cortical structures including the left thalamus, left putamen, secondary visual areas, and the right cerebellum. Broca's area-44-related networks involved in language processing were demonstrated utilizing a pooling-data connectivity study. Significance, interpretation, and limitations of the results are discussed.
    Frontiers in Psychology 04/2015; 6:687. DOI:10.3389/fpsyg.2015.00687 · 2.80 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstractness and modality of interpersonal communication have a considerable impact on comprehension. They are relevant for determining thoughts and constituting internal models of the environment. Whereas concrete object-related information can be represented in mind irrespective of language, abstract concepts require a representation in speech. Consequently, modality-independent processing of abstract information can be expected. Here we investigated the neural correlates of abstractness (abstract vs. concrete) and modality (speech vs. gestures), to identify an abstractness-specific supramodal neural network. During fMRI data acquisition 20 participants were presented with videos of an actor either speaking sentences with an abstract-social [AS] or concrete-object-related content [CS], or performing meaningful abstract-social emblematic [AG] or concrete-object-related tool-use gestures [CG]. Gestures were accompanied by a foreign language to increase the comparability between conditions and to frame the communication context of the gesture videos. Participants performed a content judgment task referring to the person vs. object-relatedness of the utterances. The behavioral data suggest a comparable comprehension of contents communicated by speech or gesture. Furthermore, we found common neural processing for abstract information independent of modality (AS>CS ∩ AG>CG) in a left hemispheric network including the left inferior frontal gyrus, temporal pole and medial frontal cortex. Modality specific activations were found in bilateral occipital, parietal and temporal as well as right inferior frontal brain regions for gesture (G>S) and in left anterior temporal regions and the left angular gyrus for the processing of speech semantics (S>G). These data support the idea that abstract concepts are represented in a supramodal manner. Consequently, gestures referring to abstract concepts are processed in a predominantly left hemispheric language related neural network.
    Frontiers in Behavioral Neuroscience 09/2013; 7. DOI:10.3389/fnbeh.2013.00120 · 4.16 Impact Factor