Article

Differential cerebral activation during observation of expressive gestures and motor acts.

Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Germany.
Neuropsychologia (Impact Factor: 3.48). 02/2006; 44(10):1787-95. DOI: 10.1016/j.neuropsychologia.2006.03.016
Source: PubMed

ABSTRACT We compared brain activation involved in the observation of isolated right hand movements (e.g. twisting a lid), body-referred movements (e.g. brushing teeth) and expressive gestures (e.g. threatening) in 20 healthy subjects by using functional magnetic resonance imaging (fMRI). Perception-related areas in the occipital and inferior temporal lobe but also the mirror neuron system in the lateral frontal (ventral premotor cortex and BA 44) and superior parietal lobe were active during all three conditions. Observation of body-referred compared to common hand actions induced increased activity in the bilateral posterior superior temporal sulcus (STS), the left temporo-parietal lobe and left BA 45. Expressive gestures involved additional areas related to social perception (bilateral STS, temporal poles, medial prefrontal lobe), emotional processing (bilateral amygdala, bilateral ventrolateral prefrontal cortex (VLPFC), speech and language processing (Broca's and Wernicke's areas) and the pre-supplementary motor area (pre-SMA). In comparison to body-referred actions, expressive gestures evoked additional activity only in the left VLPFC (BA 47). The valence-ratings for expressive gestures correlated significantly with activation intensity in the VLPFC during expressive gesture observation. Valence-ratings for negative expressive gestures correlated with right STS-activity. Our data suggest that both, the VLPFC and the STS are coding for differential emotional valence during the observation of expressive gestures.

0 Bookmarks
 · 
233 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: [Purpose] The purpose of this study was to compare the effects of action observation training and motor imagery training on recovery from chronic stroke. [Subjects] Thirty patients (who were over six months post stroke) participated in this study and were randomly allocated to three groups. [Methods] The action observation training group practiced additional action observation training for five 30-minute sessions over a four-week period. The motor imagery training group practiced additional motor imagery training for five 30-minute sessions over a four-week period. Electroencephalogram were used to compare brain waves between the three groups. [Results] The action observation group showed significant changes in relative alpha power in Fp1 and Fp2 and relative beta power in Fp2 and C3. [Conclusion] Action observation induces higher levels of cognitive activities than motor imagery and physical training. Action observation is expected to be more effective for stroke patients.
    Journal of Physical Therapy Science 07/2013; 25(7):779-782. · 0.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neuropsychological and neuroimaging data suggest a differential contribution of posterior parietal regions during the different components of a transitive gesture. Reaching requires the integration of object location and body position coordinates and reaching tasks elicit bilateral activation in different foci along the intraparietal sulcus. Grasping requires a visuomotor match between the object's shape and the hand's posture. Lesion studies and neuroimaging confirm the importance of the anterior part of the intraparietal sulcus for human grasping. Reaching and grasping reveal bilateral activation that is generally more prominent on the side contralateral to the hand used or the hemifield stimulated. Purposeful behavior with objects and tools can be assessed in a variety of ways, including actual use, pantomimed use, and pure imagery of manipulation. All tasks have been shown to elicit robust activation over the left parietal cortex in neuroimaging, but lesion studies have not always confirmed these findings. Compared to pantomimed or imagined gestures, actual object and tool use typically produces activation over the left primary somatosensory region. Neuroimaging studies on pantomiming or imagery of tool use in healthy volunteers revealed neural responses in possibly separate foci in the left supramarginal gyrus. In sum, the parietal contribution of reaching and grasping of objects seems to depend on a bilateral network of intraparietal foci that appear organized along gradients of sensory and effector preferences. Dorsal and medial parietal cortex appears to contribute to the online monitoring/adjusting of the ongoing prehensile action, whereas the functional use of objects and tools seems to involve the inferior lateral parietal cortex. This functional input reveals a clear left lateralized activation pattern that may be tuned to the integration of acquired knowledge in the planning and guidance of the transitive movement.
    Frontiers in Psychology 01/2014; 5:151. · 2.80 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Understanding the intentions and desires of those around us is vital for adapting to a dynamic social environment. In this paper, a novel event-related functional Magnetic Resonance Imaging (fMRI) paradigm with dynamic and natural stimuli (2s video clips) was developed to directly examine the neural networks associated with processing of gestures with social intent as compared to nonsocial intent. When comparing social to nonsocial gestures, increased activation in both the mentalizing (or theory of mind) and amygdala networks were found. As a secondary aim, a factor of actor-orientation was included in the paradigm to examine how the neural mechanisms differ with respect to personal engagement during a social interaction versus passively observing an interaction. Activity in the lateral occipital cortex and precentral gyrus were found sensitive to actor-orientation during social interactions. Lastly, by manipulating face-visibility we tested whether facial information alone is the primary driver of neural activation differences observed between social and nonsocial gestures. We discovered that activity in the posterior superior temporal sulcus (pSTS) and fusiform gyrus (FFG) were partially driven by observing facial expressions during social gestures. Altogether, using multiple factors associated with processing of natural social interaction, we conceptually advance our understanding of how social stimuli is processed in the brain and discuss the application of this paradigm to clinical populations where atypical social cognition is manifested as a key symptom.
    NeuroImage 09/2013; · 6.25 Impact Factor

Full-text (2 Sources)

Download
85 Downloads
Available from
May 27, 2014