Mutational alteration of human immunodeficiency virus type 1 Vif allows for functional interaction with nonhuman primate APOBEC3G.

Infectious Disease Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
Journal of Virology (Impact Factor: 4.65). 06/2006; 80(12):5984-91. DOI: 10.1128/JVI.00388-06
Source: PubMed

ABSTRACT Human APOBEC3F (hA3F) and APOBEC3G (hA3G) are antiretroviral cytidine deaminases that can be encapsidated during virus assembly to catalyze C-->U deamination of the viral reverse transcripts in the next round of infection. Lentiviruses such as human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) have evolved the accessory protein Vif to induce their degradation before packaging. HIV type 1 (HIV-1) Vif counteracts hA3G but not rhesus macaque APOBEC3G (rhA3G) or African green monkey (AGM) APOBEC3G (agmA3G) because of a failure to bind the nonhuman primate proteins. The species specificity of the interaction is controlled by amino acid 128, which is aspartate in hA3G and lysine in rhA3G. With the objective of overcoming this species restriction, mutations were introduced into HIV-1 Vif at amino acid positions that differed in charge between HIV-1 Vif and SIV Vif. The mutant proteins were tested for the ability to counteract hA3G, rhA3G, and agmA3G. Alteration of the conserved sequence at positions 14 to 17 from DRMR to SERQ, which is the sequence in AGM Vif, caused HIV-1 Vif to functionally interact with rhA3G and agmA3G. Mutation of three residues to the sequence SEMQ allowed interaction with rhA3G. SEMQ Vif also counteracted D128K mutant hA3G and wild-type hA3G. Introduction of the sequence into an infectious molecular HIV-1 clone allowed the virus to replicate productively in human cells that expressed rhA3G or hA3G. These findings provide insight into the interaction of Vif with A3G and are a step toward the development of a novel primate model for AIDS.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: HIV is the causative agent of AIDS, the plague of the last decades. It belongs to the lentiviridae, a family of viruses that causes similar infections in a range of host mammal species. Despite the similar course of infection, AIDS only develops in species that have recently become hosts for these viruses. All other host species have a relative harmless lifelong infection. This has been explained as a consequence of a long viral-host coevolution. In this work, we show that this explanation is not appropriate and hypothesize that viral evolution alone can be responsible for the apathogenic infection. The corollary of this hypothesis is that AIDS can potentially be cured or prevented by inoculation of a modified HIV virus, and that research should focus on developing such a virus.
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Vif protein of HIV-1 allows virus replication by degrading several members of the host-encoded APOBEC3 family of DNA cytosine deaminases. Polymorphisms in both host APOBEC3 genes and the viral vif gene have the potential to impact the extent of virus replication among individuals. The most genetically diverse of the seven human APOBEC3 genes is APOBEC3H with seven known haplotypes. Overexpression studies have shown that a subset of these variants express stable and active proteins, whereas the others encode proteins with a short half-life and little, if any, antiviral activity. We demonstrate that these stable/unstable phenotypes are an intrinsic property of endogenous APOBEC3H proteins in primary CD4+ T lymphocytes and confer differential resistance to HIV-1 infection in a manner that depends on natural variation in the Vif protein of the infecting virus. HIV-1 with a Vif protein hypo-functional for APOBEC3H degradation, yet fully able to counteract APOBEC3D, APOBEC3F, and APOBEC3G, was susceptible to restriction and hypermutation in stable APOBEC3H expressing lymphocytes, but not in unstable APOBEC3H expressing lymphocytes. In contrast, HIV-1 with hyper-functional Vif counteracted stable APOBEC3H proteins as well as all other endogenous APOBEC3s and replicated to high levels. We also found that APOBEC3H protein levels are induced over 10-fold by infection. Finally, we found that the global distribution of stable/unstable APOBEC3H haplotypes correlates with the distribution a critical hyper/hypo-functional Vif amino acid residue. These data combine to strongly suggest that stable APOBEC3H haplotypes present as in vivo barriers to HIV-1 replication, that Vif is capable of adapting to these restrictive pressures, and that an evolutionary equilibrium has yet to be reached.
    PLoS Genetics 11/2014; 10(11):e1004761. DOI:10.1371/journal.pgen.1004761 · 8.17 Impact Factor


Available from