Article

Mutational alteration of human immunodeficiency virus type 1 Vif allows for functional interaction with nonhuman primate APOBEC3G.

Infectious Disease Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
Journal of Virology (Impact Factor: 4.65). 06/2006; 80(12):5984-91. DOI: 10.1128/JVI.00388-06
Source: PubMed

ABSTRACT Human APOBEC3F (hA3F) and APOBEC3G (hA3G) are antiretroviral cytidine deaminases that can be encapsidated during virus assembly to catalyze C-->U deamination of the viral reverse transcripts in the next round of infection. Lentiviruses such as human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) have evolved the accessory protein Vif to induce their degradation before packaging. HIV type 1 (HIV-1) Vif counteracts hA3G but not rhesus macaque APOBEC3G (rhA3G) or African green monkey (AGM) APOBEC3G (agmA3G) because of a failure to bind the nonhuman primate proteins. The species specificity of the interaction is controlled by amino acid 128, which is aspartate in hA3G and lysine in rhA3G. With the objective of overcoming this species restriction, mutations were introduced into HIV-1 Vif at amino acid positions that differed in charge between HIV-1 Vif and SIV Vif. The mutant proteins were tested for the ability to counteract hA3G, rhA3G, and agmA3G. Alteration of the conserved sequence at positions 14 to 17 from DRMR to SERQ, which is the sequence in AGM Vif, caused HIV-1 Vif to functionally interact with rhA3G and agmA3G. Mutation of three residues to the sequence SEMQ allowed interaction with rhA3G. SEMQ Vif also counteracted D128K mutant hA3G and wild-type hA3G. Introduction of the sequence into an infectious molecular HIV-1 clone allowed the virus to replicate productively in human cells that expressed rhA3G or hA3G. These findings provide insight into the interaction of Vif with A3G and are a step toward the development of a novel primate model for AIDS.

1 Follower
 · 
86 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Vif protein of HIV is essential for the effective propagation of this pathogenic retrovirus in vivo. Vif acts by preventing virion encapsidation of two potent antiviral factors, the APOBEC3G and APOBEC3F cytidine deaminases. Decreased encapsidation in part involves Vif-mediated recruitment of a ubiquitin E3 ligase complex that promotes polyubiquitylation and proteasome-mediated degradation of APOBEC3G/F. The resultant decline in intracellular levels of these enzymes leads to decreased encapsidation of APOBECG/F into budding virions. This review discusses recent advances in our understanding of the dynamic interplay of Vif with the antiviral APOBEC3 enzymes.
    Molecular Aspects of Medicine 10/2010; 31(5):383-97. DOI:10.1016/j.mam.2010.06.001 · 10.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human cytidine deaminase APOBEC3C (A3C) acts as a potent inhibitor of SIVagm and can be regulated by both HIV-1 and SIVagm Vif. The mechanism by which Vif suppresses A3C is unknown. In the present study, we demonstrate that both HIV-1 and SIVagm Vif can act in a proteasome-dependent manner to overcome A3C. SIVagm Vif requires the Cullin5-ElonginB-ElonginC E3 ubiquitin ligase for the degradation of A3C as well as the suppression of its antiviral activity. Mutation of a residue critical for the species-specific recognition of human or monkey A3G by HIV-1 Vif or SIVagm Vif in A3C had little effect on HIV-1 or SIVagm Vif-mediated degradation of A3C. Although the amino-terminal region of A3G was not important for Vif-mediated degradation, the corresponding region in A3C was critical. A3C mutants that were competent for Vif binding but resistant to Vif-mediated degradation were identified. These data suggest that primate lentiviral Vif molecules have evolved to recognize multiple host APOBEC3 proteins through distinct mechanisms. However, Cul5-E3 ubiquitin ligase appears to be a common pathway hijacked by HIV-1 and SIV Vif to defeat APOBEC3 proteins. Furthermore, Vif and APOBEC3 binding is not sufficient for target protein degradation indicating an important but uncharacterized Vif function.
    Cellular Microbiology 06/2008; 10(8):1662-75. DOI:10.1111/j.1462-5822.2008.01157.x · 4.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vif forms a complex with Elongin B/C, Cullin-5 and Rbx-1 to induce the polyubiquitination and proteasome-mediated degradation of human APOBEC3G (hA3G). These interactions serve as potential targets for anti-HIV-1 drug development. We have developed a cell culture-based assay to measure Vif-induced hA3G degradation. The assay is based on alpha-complementation, the ability of beta-galactosidase fragments to complement in trans. hA3G expressed with a fused alpha-peptide was enzymatically active, complemented a coexpressed omega-fragment and could be targeted for degradation by Vif. Vif reduced beta-galactosidase activity in the cell by 10-30-fold. The assay was validated by testing various hA3G and Vif point mutants. The assay accurately detected the effects of D128 in hA3G, and the BC box, Cul5 box and HCCH motifs of Vif. The results showed a strict association of Vif biological function with hA3G degradation. These findings support hA3G degradation as a requirement for Vif function. The Vif alpha-complementation assay may be a useful tool for the identification of Vif inhibitors.
    Virology 04/2007; 359(1):162-9. DOI:10.1016/j.virol.2006.09.013 · 3.28 Impact Factor

Preview

Download
1 Download
Available from