Suppression of the DNA repair defects of BRCA2-deficient cells with heterologous protein fusions.

Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 07/2006; 103(23):8768-73. DOI: 10.1073/pnas.0600298103
Source: PubMed

ABSTRACT The BRCA2 tumor suppressor plays an important role in the repair of DNA damage by homologous recombination, also termed homology-directed repair (HDR). Human BRCA2 is 3,418 aa and is composed of several domains. The central part of the protein contains multiple copies of a motif that binds the Rad51 recombinase (the BRC repeat), and the C terminus contains domains that have structural similarity to domains in the ssDNA-binding protein replication protein A (RPA). To gain insight into the role of BRCA2 in the repair of DNA damage, we fused a single (BRC3, BRC4) or multiple BRC motifs to the large RPA subunit. Expression of any of these protein fusions in Brca2 mutant cells substantially improved HDR while suppressing mutagenic repair. A fusion containing a Rad52 ssDNA-binding domain also was active in HDR. Mutations that reduced ssDNA or Rad51 binding impaired the ability of the fusion proteins to function in HDR. The high level of spontaneous chromosomal aberrations in Brca2 mutant cells was largely suppressed by the BRC-RPA fusion proteins, supporting the notion that the primary role of BRCA2 in maintaining genomic integrity is in HDR, specifically to deliver Rad51 to ssDNA. The fusion proteins also restored Rad51 focus formation and cellular survival in response to DNA damaging agents. Because as little as 2% of BRCA2 fused to RPA is sufficient to suppress cellular defects found in Brca2-mutant mammalian cells, these results provide insight into the recently discovered diversity of BRCA2 domain structures in different organisms.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in BRCA2 increase susceptibility to breast, ovarian and prostate cancers. The product of human BRCA2, BRCA2 protein, has a key role in the repair of DNA double-strand breaks and interstrand cross-links by RAD51-mediated homologous recombination. Here, we present a biochemical and structural characterization of full-length (3,418 amino acid) BRCA2, alone and in complex with RAD51. We show that BRCA2 facilitates nucleation of RAD51 filaments at multiple sites on single-stranded DNA. Three-dimensional EM reconstructions revealed that BRCA2 exists as a dimer and that two oppositely oriented sets of RAD51 molecules bind the dimer. Single-stranded DNA binds along the long axis of BRCA2, such that only one set of RAD51 monomers can form a productive complex with DNA and establish filament formation. Our data define the molecular mechanism by which this tumor suppressor facilitates RAD51-mediated homologous-recombinational repair.
    Nature Structural & Molecular Biology 10/2014; 21(11). DOI:10.1038/nsmb.2899 · 11.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: PALB2 [partner and localizer of BRCA2 (breast cancer early-onset 1)] has emerged as a key player in the maintenance of genome integrity. Biallelic mutations in PALB2 cause FA (Fanconi's anaemia) subtype FA-N, a devastating inherited disorder marked by developmental abnormalities, bone marrow failure and childhood cancer susceptibility, whereas monoallelic mutations predispose to breast, ovarian and pancreatic cancer. The tumour suppressor role of PALB2 has been intimately linked to its ability to promote HR (homologous recombination)-mediated repair of DNA double-strand breaks. Because PALB2 lies at the crossroads between FA, HR and cancer susceptibility, understanding its function has become the primary focus of several studies. The present review discusses a current synthesis of the contribution of PALB2 to these pathways. We also provide a molecular description of FA- or cancer-associated PALB2 mutations.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Genome maintenance by homologous recombination depends on coordinating many proteins in time and space to assemble at DNA break sites. To understand this process, we followed the mobility of BRCA2, a critical recombination mediator, in live cells at the single-molecule level using both single-particle tracking and fluorescence correlation spectroscopy. BRCA2-GFP and -YFP were compared to distinguish diffusion from fluorophore behavior. Diffusive behavior of fluorescent RAD51 and RAD54 was determined for comparison. All fluorescent proteins were expressed from endogenous loci. We found that nuclear BRCA2 existed in oligomeric clusters, and exhibited heterogeneous mobility. DNA damage increased BRCA2 transient binding, presumably including binding to damaged sites. Despite its very different size, RAD51 displayed mobility similar to BRCA2, which indicates physical interaction between these proteins both before and after induction of DNA damage. We propose that BRCA2-mediated sequestration of nuclear RAD51 serves to prevent inappropriate DNA interactions and that all RAD51 is delivered to DNA damage sites in association with BRCA2. © 2014 Reuter et al.
    The Journal of Cell Biology 12/2014; 207(5):599-613. DOI:10.1083/jcb.201405014 · 9.69 Impact Factor

Full-text (2 Sources)

Available from
Nov 5, 2014