Symmetry-based magnetic Anisotropy in the trigonal bipyramidal cluster [Tp(2)(Me(3)tacn)(3)Cu3Fe2(CN)(6)](4+)

Coordination Chemistry Institute and State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, China.
Journal of the American Chemical Society (Impact Factor: 12.11). 07/2006; 128(22):7162-3. DOI: 10.1021/ja061788+
Source: PubMed


Reaction of [(Me3tacn)Cu(H2O)2]2+ (Me3tacn = N,N',N' '-trimethyl-1,4,7-triazacyclononane) with [TpFe(CN)3]- (Tp- = hydrotris(pyrazolyl)borate) in a mixture of ethanol and acetonitrile affords the pentanuclear cluster [Tp2(Me3tacn)3Cu3Fe2(CN)6]4+. Single-crystal X-ray analysis reveals a trigonal bipyramidal structure featuring a D3h-symmetry core in which two opposing FeIII (S = 1/2) centers are linked through cyanide bridges to an equatorial triangle of three CuII (S = 1/2) centers. Fits to variable-temperature dc magnetic susceptibility data are consistent with ferromagnetic coupling to give an S = 5/2 ground state, while fits to low-temperature magnetization data indicate the presence of a large axial zero-field splitting (D = -5.7 cm-1). Frequency dependence observed in the ac magnetic susceptibility data confirms single-molecule magnet behavior, with an effective spin reversal barrier of Ueff = 16 cm-1. When compared with the much lower anisotropy barrier previously observed for the face-centered cubic cluster [Tp8(H2O)6Cu6Fe8(CN)6]4+, the results demonstrate the enormous influence of the geometry in which a given set of metal ions are arranged.

Download full-text


Available from: Cai-Feng Wang,
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The reaction of [M(CN)6]3- (M = Cr3+, Fe3+, Co3+) with the nickel(II) complex of 2,4-diamino-1,3,5-triazin-6-yl-{3-(1,3,5,8,12-pentaazacyclotetradecane)} ([NiL]2+) in excess of ANO3 or ACl (A = Li+, Na+, K+, Rb+, Cs+, NH4+) leads to the cyano-bridged dinuclear assemblies A{[NiL][M(CN)6]}·xH2O (x = 2-5). X-ray structures of Li{[NiL][Cr(CN)6]}·5H2O, NH4{[NiL][Cr(CN)6]}·3.5H2O, K{[NiL][Cr(CN)6]}·4H2O, K{[NiL][Fe(CN)6]}·4H2O, Rb{[NiL][Fe(CN)6]}·3.5H2O, and Cs{[NiL][Fe(CN)6]}·3.5H2O, as well as the powder diffractometry of the entire FeIII series, are reported. The magnetic properties of the assemblies are dependent on the monocation A and discussed in detail. New efficient pathways for ferromagnetic exchange between NiII and FeIII or CrIII are demonstrated. Field dependencies of the magnetization for the FeIII samples at low temp. and low magnetic field indicate a weak interchain antiferromagnetic coupling, which is switched to ferromagnetic coupling at increasing magnetic field (metamagnetic behavior). The interchain magnetic coupling can be tuned by the size of the A cations. [on SciFinder(R)]
    Inorganic Chemistry 10/2006; 45(19-19):7722-7735. DOI:10.1021/ic060453q · 4.76 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The reactions of [M(II)(Tpm(Me))(H2O)3]2+ (M = Ni, Co, Fe; Tpm(Me) = tris(3,5-dimethyl-1-pyrazoyl)methane) with [Bu4N][(Tp)Fe(III)(CN)3] (Bu4N+ = tetrabutylammonium cation; Tp = tris(pyrazolyl)hydroborate) in MeCN-Et2O afford three pentanuclear cyano-bridged clusters, [(Tp)3(Tpm(Me))2Fe(III)3M(II)2(CN)9]ClO4.15H2O (M = Ni, 1; M = Co, 2) and [(Tp)3(Tpm(Me))2Fe(III)3Fe(II)2(CN)9]BF4.15H2O (3). Single-crystal X-ray analyses reveal that they show the same trigonal bipyramidal structure featuring a D3h-symmetry core, in which two opposing Tpm(Me)-ligated M(II) ions situated in the two apical positions are linked through cyanide bridges to an equatorial triangle of three Tp-ligated Fe(III) (S = 1/2) centers. Magnetic studies for complex 1 show ferromagnetic coupling giving an S = 7/2 ground state and an appreciable magnetic anisotropy with a negative D(7/2) value equal to -0.79 cm(-1). Complex 2 shows zero-field splitting parameters deducted from the magnetization data with D = -1.33 cm(-1) and g = 2.81. Antiferromagnetic interaction was observed in complex 3.
    Inorganic Chemistry 11/2006; 45(22):8895-901. DOI:10.1021/ic060772h · 4.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: With the use of the tailored cyanometalate precursor, (Bu4N)[(Tp)Fe(CN)3] (Tp = Tris(pyrazolyl)hydroborate) as the building block to react with fully solvated Cu(II), Co(II), and Ni(II) cations, four one-dimensional (1D) heterobimetallic cyano-bridged chain complexes of squares, [(Tp)2Fe(III)2(CN)6Cu(CH3OH).2CH3OH]n (1), [(Tp)2Fe(III)2(CN)6Cu(DMF).DMF]n (2), [(Tp)2Fe(III)2(CN)6M(CH3OH)2.2CH3OH]n (M = Co (3) and Ni (4)), have been prepared. In complexes 1 and 2, the Cu(II) ions are pentacoordinated in the form of a slightly distorted square-based pyramid, and they are linked by distorted octahedrons of [(Tp)Fe(CN)3]- to form 1D chains of squares. In complexes 3 and 4, both the central Co(II) and Ni(II) ions have a slightly distorted octahedral coordination geometry, and they are bridged by [(Tp)Fe(CN)3]- to form similar 1D chains of squares. There are weak interchain pi-pi stacking interactions through the pyrazolyl groups of the Tp ligands for complexes 3 and 4. The crystal structures and magnetic studies demonstrate that complexes 1 and 2 exhibit intrachain ferromagnetic coupling and single-chain magnets behavior, and the blocking temperature is ca. 6 K for complex 1 and ca. 3 K for complex 2. Complexes 3 and 4 show significant metamagnetic behavior, where the cyanides mediate the intrachain ferromagnetic coupling between Fe(III) and Co(II) or Ni(II) ions and the interchain pi-pi stacking interactions lead to antiferromagnetic couplings. The field dependence of the magnetization measurements shows that the critical field is around 1 kOe for complex 3 and 0.8 kOe for complex 4 at 1.8 K.
    Inorganic Chemistry 11/2006; 45(22):8942-9. DOI:10.1021/ic060928d · 4.76 Impact Factor
Show more