Osmotic shock-induced suicidal death of erythrocytes.

Department of Physiology, University of Tübingen, Tübingen, Germany.
Acta Physiologica (Impact Factor: 4.38). 01/2006; 187(1-2):191-8. DOI: 10.1111/j.1748-1716.2006.01564.x
Source: PubMed

ABSTRACT Osmotic shock triggers eryptosis, a suicidal death of erythrocytes characterized by cell shrinkage, cell membrane blebbing and phosphatidylserine exposure at the cell surface. Phosphatidylserine-exposing erythrocytes are recognized by macrophages, engulfed, degraded and thus cleared from circulating blood. Eryptosis following osmotic shock is mediated by two distinct signalling pathways. On the one hand, osmotic shock stimulates a cyclooxygenase leading to formation of prostaglandin E2 and subsequent activation of Ca2+-permeable cation channels. On the other hand, osmotic shock activates a phospholipase A2 leading to release of platelet activating factor, which in turn activates a sphingomyelinase and thus stimulates the formation of ceramide. The increased cytosolic Ca2+ concentrations on the one hand and ceramide on the other trigger phospholipid scrambling of the cell membrane with the subsequent shift of phosphatidylserine from the inner to the outer cell membrane leaflet. Ca2+ further activates Ca2+-sensitive K+ channels leading to cellular KCl loss and further cell shrinkage. The cation channels are inhibited by Cl- anions, erythropoietin and dopamine. The sphingomyelinase is inhibited by high concentrations of urea. Thus, the high Cl- and urea concentrations in renal medulla presumably prevent the triggering of eryptosis despite hyperosmolarity. The mechanisms involved in eryptosis may not only affect the survival of erythrocytes but may be similarly operative in nucleated cells exposed to osmotic shock.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Improvements in neutrophil chemotaxis assays have advanced our understanding of the mechanisms of neutrophil recruitment; however, traditional methods limit biologic inquiry in important areas. We report a microfluidic technology that enables neutrophil purification and chemotaxis on-chip within minutes, using nanoliters of whole blood, and only requires a micropipette to operate. The low sample volume requirements and novel lid-based method for initiating the gradient of chemoattractant enabled the measurement of human neutrophil migration on a cell monolayer to probe the adherent and migratory states of neutrophils under inflammatory conditions; mouse neutrophil chemotaxis without sacrificing the animal; and both 2D and 3D neutrophil chemotaxis. First, the neutrophil chemotaxis on endothelial cells revealed 2 distinct neutrophil phenotypes, showing that endothelial cell-neutrophil interactions influence neutrophil chemotactic behavior. Second, we validated the mouse neutrophil chemotaxis assay by comparing the adhesion and chemotaxis of neutrophils from chronically inflamed and wild-type mice; we observed significantly higher neutrophil adhesion in blood obtained from chronically inflamed mice. Third, we show that 2D and 3D neutrophil chemotaxis can be directly compared using our technique. These methods allow for new avenues of research while reducing the complexity, time, and sample volume requirements to perform neutrophil chemotaxis assays.
    Blood 08/2012; 120(14):e45-53. · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A low-angle light scattering technique, which has been applied previously to studies of blood platelets and Ehrlich ascite tumor cells, revealed differences in the dynamics of necrotic and apoptotic red blood cell death. Under hypotonic loading or in ammonia medium, red blood cells (RBC) swelled to a critical size (diameter approximately 13 µm) prior to hemolysis (necrosis). Under acidic loading, hemolysis occurred with less pronounced swelling of cells (diameter approximately 10 µm). Apoptosis induced by a calcium ionophore resulted in initial formation of echinocytes, followed by development of rounded red blood cells with uneven membrane, capable of agglomeration. In such a way, RBC aggregation can precede the final stages of the RBC apoptosis when small cellular fragments are generated. On the basis of erythrograms of the cells hemolysing in ammonia medium, the echinocytic (preapoptotic) and stomatocytic (prenecrotic) RBC were discerned due to the very high resistance of apoptotic RBC to osmotic (ammonia) loading.
    International Journal of Spectroscopy 01/2007; 21:105-120.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inflammation enhances the secretion of sphingomyelinases (SMases). SMases catalyze the hydrolysis of sphingomyelin into phosphocholine and ceramide. In erythrocytes, ceramide formation leads to exposure of the removal signal phosphatidylserine (PS), creating a potential link between SMase activity and anemia of inflammation. Therefore, we studied the effects of SMase on various pathophysiologically relevant parameters of erythrocyte homeostasis. Time-lapse confocal microscopy revealed a SMase-induced transition from the discoid to a spherical shape, followed by PS exposure, and finally loss of cytoplasmic content. Also, SMase treatment resulted in ceramide-associated alterations in membrane-cytoskeleton interactions and membrane organization, including microdomain formation. Furthermore, we observed increases in membrane fragility, vesiculation and invagination, and large protein clusters. These changes were associated with enhanced erythrocyte retention in a spleen-mimicking model. Erythrocyte storage under blood bank conditions and during physiological aging increased the sensitivity to SMase. A low SMase activity already induced morphological and structural changes, demonstrating the potential of SMase to disturb erythrocyte homeostasis. Our analyses provide a comprehensive picture in which ceramide-induced changes in membrane microdomain organization disrupt the membrane-cytoskeleton interaction and membrane integrity, leading to vesiculation, reduced deformability, and finally loss of erythrocyte content. Understanding these processes is highly relevant for understanding anemia during chronic inflammation, especially in critically ill patients receiving blood transfusions.
    Cell Death & Disease 01/2012; 3:e410. · 6.04 Impact Factor