Article

An analysis of continent-wide patterns of sexual selection in a passerine bird.

Laboratoire de Parasitologie Evolutive, CNRS UMR 7103, Universitè Pierre et Marie Curie, Bât. A, 7eme etage, 7 quai St. Bernard, Case 237, F-75252 Paris Cedex 05, France.
Evolution (Impact Factor: 4.86). 05/2006; 60(4):856-68. DOI: 10.1554/05-665.1
Source: PubMed

ABSTRACT Patterns of selection are widely believed to differ geographically, causing adaptation to local environmental conditions. However, few studies have investigated patterns of phenotypic selection across large spatial scales. We quantified the intensity of selection on morphology in a monogamous passerine bird, the barn swallow Hirundo rustica, using 6495 adults from 22 populations distributed across Europe and North Africa. According to the classical Darwin-Fisher mechanism of sexual selection in monogamous species, two important components of fitness due to sexual selection are the advantages that the most attractive males acquire by starting to breed early and their high annual fecundity. We estimated directional selection differentials on tail length (a secondary sexual character) and directional selection gradients after controlling for correlated selection on wing length and tarsus length with respect to these two fitness components. Phenotype and fitness components differed significantly among populations for which estimates were available for more than a single year. Likewise, selection differentials and selection gradients differed significantly among populations for tail length, but not for the other two characters. Sexual selection differentials differed significantly from zero across populations for tail length, particularly in males. Controlling statistically for the effects of age reduced the intensity of selection by 60 to 81%, although corrected and uncorrected estimates were strongly positively correlated. Selection differentials and gradients for tail length were positively correlated between the sexes among populations for selection acting on breeding date, but not for fecundity selection. The intensity of selection with respect to breeding date and fecundity were significantly correlated for tail length across populations. Sexual size dimorphism in tail length was significantly correlated with selection differentials with respect to breeding date for tail length in male barn swallows across populations. These findings suggest that patterns of sexual selection are consistent across large geographical scales, but also that they vary among populations. In addition, geographical patterns of phenotypic selection predict current patterns of phenotypic variation among populations, suggesting that consistent patterns of selection have been present for considerable amounts of time.

1 Bookmark
 · 
138 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The geographic variations in male ornamentation provide insights into how different populations reach a different mean trait value under opposing forces of natural and sexual selection. Although the latitudinal cline of the elongated tail streamer, a sexually selected trait in the European subspecies of the barn swallow Hirundo rustica rustica, is a classic example, it has recently been shown that other subspecies of swallows have different targets of sexual selection. Here, we studied the latitudinal cline of ornamentation in the Asian subspecies, H. r. gutturalis, in which not the tail length but the white tail spot and red throat patch are important sexually selected traits. After controlling for covariates, the size of the white tail spot increased with latitude, while the size of the red throat patch decreased with latitude. On the other hand, we could not find any clear pattern regarding the elongated tail streamer, measured as fork depth. The divergent ornamentation across populations could be explained by latitudinal clines of sexually selected advantages of each ornament.
    Journal of Ethology 31(1). · 1.00 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Large populations with extensive breeding distributions may sustain greater genetic variability, thus producing a positive relationship between genetic variation and population size. Levels of genetic variability may also be affected by sexual selection, which could either reduce levels because a small fraction of males contribute to the following generation, or augment them by generating genetic variability through elevated rates of mutations. We investigated to what extent genetic variability, as estimated from band sharing coefficients for minisatellite markers, could be predicted by breeding distribution range, population size and intensity of sexual selection (as reflected by degree of polygyny and extra-pair paternity). Across a sample of 62 species of birds in the Western Palearctic, we found extensive interspecific variation in band sharing coefficients. High band sharing coefficients (implying low local genetic variability among individuals) were associated with restricted breeding distributions, a conclusion confirmed by analysis of statistically independent linear contrasts. Independently, species with large population sizes had small band sharing coefficients. Furthermore, bird species with a high richness of subspecies for their breeding distribution range had higher band sharing coefficients. Finally, bird species with high levels of polygyny and extra-pair paternity had small band sharing coefficients. These results suggest that breeding distribution range, population size and intensity of sexual selection are important predictors of levels of genetic variability in extant populations.
    Journal of Evolutionary Biology 02/2008; 21(1):213-25. · 3.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Migration is a complex trait although little is known about genetic correlations between traits involved in such migration syndromes. To assess the migratory responses to climate change, we need information on genetic constraints on evolutionary potential of arrival dates in migratory birds. Using two long-term data sets on barn swallows Hirundo rustica (from Spain and Denmark), we show for the first time in wild populations that spring arrival dates are phenotypically and genetically correlated with morphological and life history traits. In the Danish population, length of outermost tail feathers and wing length were negatively genetically correlated with arrival date. In the Spanish population, we found a negative genetic correlation between arrival date and time elapsed between arrival date and laying date, constraining response to selection that favours both early arrival and shorter delays. This results in a decreased rate of adaptation, not because of constraints on arrival date, but constraints on delay before breeding, that is, a trait that can be equally important in the context of climate change.
    Journal of Evolutionary Biology 06/2011; 24(9):2025-39. · 3.48 Impact Factor

Full-text (3 Sources)

View
40 Downloads
Available from
Jun 1, 2014