Article

Hypoxia converts human macrophages into triglyceride-loaded foam cells

Wallenberg Laboratory for Cardiovascular Research, Sahlgrenska Academy, Göteborg, Sweden.
Arteriosclerosis Thrombosis and Vascular Biology (Impact Factor: 5.53). 09/2006; 26(8):1871-6. DOI: 10.1161/01.ATV.0000229665.78997.0b
Source: PubMed

ABSTRACT Atherosclerotic lesions have regions that are hypoxic. Because the lesion contains macrophages that are loaded with lipid, we investigated whether hypoxia can influence the accumulation of lipids in these cells.
Exposure of human macrophages to hypoxia for 24 hours resulted in an increased formation of cytosolic lipid droplets and an increased accumulation of triglycerides. Exposure of the macrophages to oxidized low-density lipoprotein (oxLDL) increased the accumulation of cytosolic lipid droplets because of an increase in cellular cholesterol esters. The accumulation of lipid droplets in oxLDL-treated cells was further increased after hypoxia, caused by an increased level of triglycerides. Expression analyses combined with immunoblot or RT-PCR demonstrated that hypoxia increased the expression of several genes that could promote the accumulation of lipid droplets. Hypoxia increased the mRNA and protein levels of adipocyte differentiation-related protein (ADRP). It is well known that an increased expression of ADRP increases the formation of lipid droplets. Hypoxia decreased the expression of enzymes involved in beta-oxidation (acyl-coenzyme A synthetase and acyl-coenzyme A dehydrogenase) and increased the expression of stearoyl-coenzyme A desaturase, an important enzyme in the fatty acid biosynthesis. Moreover, exposure to hypoxia decreased the rate of beta-oxidation, whereas the accumulation of triglycerides increased.
The results demonstrate that exposure of human macrophages to hypoxia causes an accumulation of triglyceride-containing cytosolic lipid droplets. This indicates that the hypoxia present in atherosclerotic lesions can contribute to the formation of the lipid-loaded macrophages that characterize the lesion and to the accumulation of triglycerides in such lesions.

Full-text

Available from: Lillemor Mattsson Hultén, May 30, 2015
0 Followers
 · 
133 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The liver is a central organ that metabolizes excessive nutrients for storage in the form of glycogen and lipids and supplies energy-producing substrates to the peripheral tissues to maintain their function, even under starved conditions. These processes require a considerable amount of oxygen, which causes a steep oxygen gradient throughout the hepatic lobules. Alcohol consumption and/or excessive food intake can alter the hepatic metabolic balance drastically, which can precipitate fatty liver disease, a major cause of chronic liver diseases worldwide, ranging from simple steatosis, through steatohepatitis and hepatic fibrosis, to liver cirrhosis. Altered hepatic metabolism and tissue remodeling in fatty liver disease further disrupt hepatic oxygen homeostasis, resulting in severe liver hypoxia. As master regulators of adaptive responses to hypoxic stress, hypoxia-inducible factors (HIFs) modulate various cellular and organ functions, including erythropoiesis, angiogenesis, metabolic demand, and cell survival, by activating their target genes during fetal development and also in many disease conditions such as cancer, heart failure, and diabetes. In the past decade, it has become clear that HIFs serve as key factors in the regulation of lipid metabolism and fatty liver formation. This review discusses the molecular mechanisms by which hypoxia and HIFs regulate lipid metabolism in the development and progression of fatty liver disease.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Improvements in poultry production within the past 50 years have led to increased muscle yield and growth rate, which may be contributing to an increased rate and development of new muscle disorders in chickens. Previously reported muscle disorders and conditions are generally associated with poor meat quality traits and have a significant negative economic impact on the poultry industry. Recently, a novel myopathy phenotype has emerged which is characterized by palpably "hard" or tough breast muscle. The objective of this study is to identify the underlying biological mechanisms that contribute to this emerging muscle disorder colloquially referred to as "Wooden Breast", through the use of RNA-sequencing technology. We constructed cDNA libraries from five affected and six unaffected breast muscle samples from a line of commercial broiler chickens. After paired-end sequencing of samples using the Illumina Hiseq platform, we used Tophat to align the resulting sequence reads to the chicken reference genome and then used Cufflinks to find significant changes in gene transcript expression between each group. By comparing our gene list to previously published histology findings on this disorder and using Ingenuity Pathways Analysis (IPA®), we aim to develop a characteristic gene expression profile for this novel disorder through analyzing genes, gene families, and predicted biological pathways. Over 1500 genes were differentially expressed between affected and unaffected birds. There was an average of approximately 98 million reads per sample, across all samples. Results from the IPA analysis suggested "Diseases and Disorders" such as connective tissue disorders, "Molecular and Cellular Functions" such as cellular assembly and organization, cellular function and maintenance, and cellular movement, "Physiological System Development and Function" such as tissue development, and embryonic development, and "Top Canonical Pathways" such as, coagulation system, axonal guidance signaling, and acute phase response signaling, are associated with the Wooden Breast disease. There is convincing evidence by RNA-seq analysis to support localized hypoxia, oxidative stress, increased intracellular calcium, as well as the possible presence of muscle fiber-type switching, as key features of Wooden Breast Disease, which are supported by reported microscopic lesions of the disease.
    International Plant and Animal Genome Conference XXII 2014; 05/2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic kidney disease (CKD) is associated with a high risk of death. Dyslipidemia is commonly observed in patients with CKD and is accompanied by a decrease in plasma high-density lipoprotein, and an increase in plasma triglyceride-rich lipoproteins and oxidized lipids. The observation that statins may decrease albuminuria but do not stop the progression of CKD indicates that pathways other than the cholesterol synthesis contribute to cholesterol accumulation in the kidneys of patients with CKD. Recently, it has become clear that increased lipid influx and impaired reverse cholesterol transport can promote glomerulosclerosis, and tubulointerstitial damage. Lipid-rafts are cholesterol-rich membrane domains with important functions in regulating membrane fluidity, membrane protein trafficking, and in the assembly of signaling molecules. In podocytes, which are specialized cells of the glomerulus, they contribute to the spatial organization of the slit diaphragm (SD) under physiological and pathological conditions. The discovery that podocyte-specific proteins such as podocin can bind and recruit cholesterol contributing to the formation of the SD underlines the importance of cholesterol homeostasis in podocytes and suggests cholesterol as an important regulator in the development of proteinuric kidney disease. Cellular cholesterol accumulation due to increased synthesis, influx, or decreased efflux is an emerging concept in podocyte biology. This review will focus on the role of cellular cholesterol accumulation in the pathogenesis of kidney diseases with a focus on glomerular diseases.
    Frontiers in Endocrinology 10/2014; 5:169. DOI:10.3389/fendo.2014.00169