Article

Glycosylation of b-Type flagellin of Pseudomonas aeruginosa: structural and genetic basis.

Department of Medicine/Infectious Diseases, P.O. Box 100277, JHMHC, University of Florida, Gainesville, FL 32610, USA.
Journal of Bacteriology (Impact Factor: 2.69). 07/2006; 188(12):4395-403. DOI: 10.1128/JB.01642-05
Source: PubMed

ABSTRACT The flagellin of Pseudomonas aeruginosa can be classified into two major types-a-type or b-type-which can be distinguished on the basis of molecular weight and reactivity with type-specific antisera. Flagellin from the a-type strain PAK was shown to be glycosylated with a heterogeneous O-linked glycan attached to Thr189 and Ser260. Here we show that b-type flagellin from strain PAO1 is also posttranslationally modified with an excess mass of up to 700 Da, which cannot be explained through phosphorylation. Two serine residues at positions 191 and 195 were found to be modified. Each site had a deoxyhexose to which is linked a unique modification of 209 Da containing a phosphate moiety. In comparison to strain PAK, which has an extensive flagellar glycosylation island of 14 genes in its genome, the equivalent locus in PAO1 comprises of only four genes. PCR analysis and sequence information suggested that there are few or no polymorphisms among the islands of the b-type strains. Mutations were made in each of the genes, PA1088 to PA1091, and the flagellin from these isogenic mutants was examined by mass spectrometry to determine whether they were involved in posttranslational modification of the type-b flagellin. While mutation of PA1088, PA1089, and PA1090 genes altered the composition of the flagellin glycan, only unmodified flagellin was produced by the PA1091 mutant strain. There were no changes in motility or lipopolysaccharide banding in the mutants, implying a role that is limited to glycosylation.

Download full-text

Full-text

Available from: Amrisha Verma, Sep 20, 2014
0 Followers
 · 
120 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Clostridium difficile is a prominent nosocomial pathogen, proliferating and causing enteric disease in individuals with a compromised gut microflora. We characterised the post-translational modification of flagellin in C. difficile 630. The structure of the modification was solved by nuclear magnetic resonance and shown to contain an N-acetylglucosamine substituted with a phosphorylated N-methyl-L-threonine. A reverse genetics approach investigated the function of the putative four-gene modification locus. All mutants were found to have truncated glycan structures by LC-MS/MS, taking into account bioinformatic analysis, we propose that the open reading frame CD0241 encodes a kinase involved in the transfer of the phosphate to the threonine, the CD0242 protein catalyses the addition of the phosphothreonine to the N-acetylglucosamine moiety and CD0243 transfers the methyl group to the threonine. Some mutations affected motility and caused cells to aggregate to each other and abiotic surfaces. Altering the structure of the flagellin modification impacted on colonisation and disease recurrence in a murine model of infection, showing that alterations in the surface architecture of C. difficile vegetative cells can play a significant role in disease. We show that motility is not a requirement for colonisation, but that colonisation was compromised when the glycan structure was incomplete.
    Molecular Microbiology 08/2014; 94(2). DOI:10.1111/mmi.12755 · 5.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein glycosylation was once considered as an eccentricity of a few bacteria. However in the recent years multiple O-glycosylation mechanisms have been identified in bacterial species from the most diverse genera, including various important human pathogens. This review focuses on summarizing the structural diversity, the various pathways, and the physiological roles of this post-translational protein modification. We propose a classification of O-glycosylation based on the requirement of an oligosaccharyltransferase (OTase). OTase-dependent glycosylation utilizes an oligosaccharide synthesized on a lipid carrier that is transferred to proteins en bloc by an OTase. Multiple proteins, including the pilins, are glycosylated using this mechanism. OTase-independent glycosylation refers to the pathway in which glycosyltransferases sequentially add monosaccharides onto the target proteins. This pathway is employed for glycosylation of flagella and autotransporters. Both systems play key roles in pathogenesis. Exploiting glycosylation machineries it is now possible to generate glycoconjugates made of different proteins attached to polysaccharides derived from LPS or capsule biosynthesis. These recombinant glycoproteins can be exploited for vaccines and diagnostics of bacterial infections. Furthermore, O-glycosylation systems are promising targets for antibiotic development. Technological advances in MS and NMR will facilitate the discovery of novel glycosylation systems. Likely, the O-glycosylation pathways we currently know constitute just the tip of the iceberg of a still largely uncharacterized bacterial glycosylation world.
    Molecular Microbiology 05/2013; DOI:10.1111/mmi.12265 · 5.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Technology development in the high throughput sciences of genomics, transcriptomics and proteomics, has been driven by bacteriological research. These organisms are excellent models for testing new methodology due to their comparatively small genome size, the relative ease of culturing large amounts of material, and the inherent biomedical, environmental and biotechnological interest in their underlying biology. Techniques developed in prokaryotes have since become applicable to higher organisms and human disease, opening vast research opportunities for understanding complex molecular processes. Pseudomonas aeruginosa is an excellent example of a microbe with fascinating properties suitable for stretching the boundaries of technology, and with underlying biology that remains poorly understood. P. aeruginosa is an opportunistic pathogen in humans and contains one of the largest genetic capabilities for a single-celled organism (approximately 5500 genes), which allows it to encode a wide variety of surface-associated and secreted virulence factors, as well as adapt to harsh environments, forming resistance to an array of antibacterial agents. While it is a major threat as a nosocomial pathogen, and particularly in the immunocompromised, it is also the most significant cause of mortality in patients suffering from the genetic disorder, cystic fibrosis. This review examines the role of proteomics in gaining a better understanding of the molecular basis of P. aeruginosa infection and persistence in the lungs of cystic fibrosis patients.
    PROTEOMICS - CLINICAL APPLICATIONS 02/2010; 4(2):228-48. DOI:10.1002/prca.200900144 · 2.68 Impact Factor