Article

Cardiac glycosides initiate Apo2L/TRAIL-induced apoptosis in non-small cell lung cancer cells by up-regulation of death receptors 4 and 5

Department of Clinical Research, Universität Bern, Berna, Bern, Switzerland
Cancer Research (Impact Factor: 9.28). 07/2006; 66(11):5867-74. DOI: 10.1158/0008-5472.CAN-05-3544
Source: PubMed

ABSTRACT Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (Apo2L/TRAIL) belongs to the TNF family known to transduce their death signals via cell membrane receptors. Because it has been shown that Apo2L/TRAIL induces apoptosis in tumor cells without or little toxicity to normal cells, this cytokine became of special interest for cancer research. Unfortunately, cancer cells are often resistant to Apo2L/TRAIL-induced apoptosis; however, this can be at least partially negotiated by parallel treatment with other substances, such as chemotherapeutic agents. Here, we report that cardiac glycosides, which have been used for the treatment of cardiac failure for many years, sensitize lung cancer cells but not normal human peripheral blood mononuclear cells to Apo2L/TRAIL-induced apoptosis. Sensitization to Apo2L/TRAIL mediated by cardiac glycosides was accompanied by up-regulation of death receptors 4 (DR4) and 5 (DR5) on both RNA and protein levels. The use of small interfering RNA revealed that up-regulation of death receptors is essential for the demonstrated augmentation of apoptosis. Blocking of up-regulation of DR4 and DR5 alone significantly reduced cell death after combined treatment with cardiac glycosides and Apo2L/TRAIL. Combined silencing of DR4 and DR5 abrogated the ability of cardiac glycosides and Apo2L/TRAIL to induce apoptosis in an additive manner. To our knowledge, this is the first demonstration that glycosides up-regulate DR4 and DR5, thereby reverting the resistance of lung cancer cells to Apo2/TRAIL-induced apoptosis. Our data suggest that the combination of Apo2L/TRAIL and cardiac glycosides may be a new interesting anticancer treatment strategy.

Download full-text

Full-text

Available from: Steffen Frese, Oct 03, 2014
0 Followers
 · 
76 Views
  • Source
    • "Several signalling pathways have been proposed to account for this preferential cytotoxicity in cancer cells, including calcium (Ca 2 þ ) and Apo2L/TRAIL-induced apoptosis (McConkey et al, 2000; Frese et al, 2006). The recent interest in using cardiac glycosides to treat cancers has resulted in the initiation of a number of clinical trials (Vaklavas et al, 2011). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Cellular quiescence is a state of reversible proliferation arrest that is induced by anti-mitogenic signals. The endogenous cardiac glycoside ouabain is a specific ligand of the ubiquitous sodium pump, Na,K-ATPase, also known to regulate cell growth through unknown signalling pathways. To investigate the role of ouabain/Na,K-ATPase in uncontrolled neuroblastoma growth we used xenografts, flow cytometry, immunostaining, comet assay, real-time PCR, and electrophysiology after various treatment strategies. The ouabain/Na,K-ATPase complex induced quiescence in malignant neuroblastoma. Tumour growth was reduced by >50% when neuroblastoma cells were xenografted into immune-deficient mice that were fed with ouabain. Ouabain-induced S-G2 phase arrest, activated the DNA-damage response (DDR) pathway marker γH2AX, increased the cell cycle regulator p21(Waf1/Cip1) and upregulated the quiescence-specific transcription factor hairy and enhancer of split1 (HES1), causing neuroblastoma cells to ultimately enter G0. Cells re-entered the cell cycle and resumed proliferation, without showing DNA damage, when ouabain was removed. These findings demonstrate a novel action of ouabain/Na,K-ATPase as a regulator of quiescence in neuroblastoma, suggesting that ouabain can be used in chemotherapies to suppress tumour growth and/or arrest cells to increase the therapeutic index in combination therapies.
    British Journal of Cancer 04/2012; 106(11):1807-15. DOI:10.1038/bjc.2012.159 · 4.82 Impact Factor
  • Source
    • "KCC009 was a kind gift of Alvine Pharmaceuticals, Inc. (Palo Alto, CA). The human lung cancer cell lines A549, Calu1 and H1299 (American Type Culture Collection) were maintained as described before [9] "
    [Show abstract] [Hide abstract]
    ABSTRACT: Tissue transglutaminase (TG2) is implicated in cellular processes such as apoptosis and cell migration. Its acyl transferase activity cross-links certain proteins, among them transcription factors were described. We show here that the TG2 inhibitor KCC009 reversed resistance to tumor necrosis factor-related apoptosis-inducing factor (TRAIL) in lung cancer cells. Sensitization required upregulation of death receptor 5 (DR5) but not of death receptor 4. Upregulation of DR5 involved the first intron of the DR5 gene albeit it was independent from p53 and nuclear factor kappa B. In conclusion, inhibition of tissue transglutaminase provides an interesting strategy for sensitization to TRAIL-induced apoptosis in p53-deficient lung cancer cells.
    FEBS letters 07/2010; 584(13):2867-71. DOI:10.1016/j.febslet.2010.04.072 · 3.34 Impact Factor
  • Source
    • "However, there is little knowledge about the role of this category of compounds in the prevention and/or treatment of proliferative diseases such as cancer . New findings in recent five years have demonstrated that these compounds are involved in complex cell-signal transduction mechanisms , inducing selective control of human tumors rather than normal cellular proliferation [3] [4], and as such represent a promising candidate for targeted cancer chemotherapy. Hepatocellular carcinoma (HCC) is generally acknowledged as the sixth most prevalent cancer in the word and is currently the third most common cause of cancer death with a 5-year survival rate of 7% [5] [6] [7]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: 2′-epi-2′-O-Acetylthevetin B (GHSC-74) is a cardiac glycoside isolated from the seeds of Cerbera manghas L. We have demonstrated that GHSC-74 reduced the viability of HepG2 cells in a time- and dose-dependent manner. The present study was designed to explore cellular mechanisms whereby GHSC-74 led to cell cycle arrest and apoptosis in HepG2 cells. Cell cycle flow cytometry demonstrated that HepG2 cells treated with GHSC-74 (4 μM) resulted in S and G2 phase arrest in a time-dependent manner, as confirmed by mitotic index analysis. G2 phase arrest was accompanied with down-regulation of CDC2 and Cyclin B1 protein. Furthermore, GHSC-74-induced apoptotic killing, as demonstrated by DNA fragmentation, DAPI staining, and flow cytometric detection of sub-G1 DNA content in HepG2 cells. GHSC-74 treatment resulted in a significant increase in reactive oxygen species, activation of caspase-9, dissipation of mitochondrial membrane potential, and translocation of apoptosis-inducing factor (AIF) from the mitochondrion to the nucleus in HepG2 cells. Nevertheless, after GHSC-74 exposure, no significant Fas and FasL up-regulation was observed in HepG2 cells by flow cytometry. In addition, treatment with antioxidant N-acetyl-l-cysteine (NAC) and broad-spectrum caspase inhibitor z-VAD-fmk partially prevented apoptosis but did not abrogate GHSC-74-induced nuclear translocation of AIF. In conclusion, we have demonstrated that GHSC-74 inhibited growth of HepG2 cells by inducing S and G2 phase arrest of the cell cycle and by triggering apoptosis via mitochondrial disruption including both caspase-dependent and -independent pathways, and ROS generation.
    Chemico-biological interactions 01/2010; 183(1-183):142-153. DOI:10.1016/j.cbi.2009.10.012 · 2.98 Impact Factor
Show more