Article

Dasatinib (BMS-354825) selectively induces apoptosis in lung cancer cells dependent on epidermal growth factor receptor signaling for survival

University of South Florida, Tampa, Florida, United States
Cancer Research (Impact Factor: 9.28). 07/2006; 66(11):5542-8. DOI: 10.1158/0008-5472.CAN-05-4620
Source: PubMed

ABSTRACT Mutations of the epidermal growth factor receptor (EGFR) selectively activate Akt and signal transducer and activator of transcription (STAT) pathways that are important in lung cancer cell survival. Src family kinases can cooperate with receptor tyrosine kinases to signal through downstream molecules, such as phosphatidylinositol 3-kinase/PTEN/Akt and STATs. Based on the importance of EGFR signaling in lung cancer, the known cooperation between EGFR and Src proteins, and evidence of elevated Src activity in human lung cancers, we evaluated the effectiveness of a novel orally bioavailable Src inhibitor dasatinib (BMS-324825) in lung cancer cell lines with defined EGFR status. Here, we show that cell fate (death versus growth arrest) in lung cancer cells exposed to dasatinib is dependent on EGFR status. In cells with EGFR mutation that are dependent on EGFR for survival, dasatinib reduces cell viability through the induction of apoptosis while having minimal apoptotic effect on cell lines with wild-type (WT) EGFR. The induction of apoptosis in these EGFR-mutant cell lines corresponds to down-regulation of activated Akt and STAT3 survival proteins. In cell lines with WT or resistant EGFR mutation that are not sensitive to EGFR inhibition, dasatinib induces a G(1) cell cycle arrest with associated changes in cyclin D and p27 proteins, inhibits activated FAK, and prevents tumor cell invasion. Our results show that dasatinib could be effective therapy for patients with lung cancers through disruption of cell growth, survival, and tumor invasion. Our results suggest EGFR status is important in deciding cell fate in response to dasatinib.

0 Followers
 · 
125 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lung cancer is the second most common cancer and the leading cause of cancer-related deaths. Despite recent advances in the development of targeted therapies, patients with advanced disease remain incurable, mostly because metastatic non-small cell lung carcinomas (NSCLC) eventually become resistant to tyrosine kinase inhibitors (TKIs). Kinase inhibitors have the potential for target promiscuity because the kinase super family is the largest family of druggable genes that binds to a common substrate (ATP). As a result, TKIs often developed for a specific purpose have been found to act on other targets. Drug affinity chromatography has been used to show that dasatinib interacts with the TGFβ type I receptor (TβR-I), a serine-threonine kinase. To determine the potential biological relevance of this association, we studied the combined effects of dasatinib and TGFβ on lung cancer cell lines. We found that dasatinib treatment alone had very little effect; however, when NSCLC cell lines were treated with a combination of TGFβ and dasatinib, apoptosis was induced. Combined TGFβ-1 + dasatinib treatment had no effect on the activity of Smad2 or other non-canonical TGFβ intracellular mediators. Interestingly, combined TGFβ and dasatinib treatment resulted in a transient increase in p-Smad3 (seen after 3 hours). In addition, when NSCLC cells were treated with this combination, the pro-apoptotic protein BIM was up-regulated. Knockdown of the expression of Smad3 using Smad3 siRNA also resulted in a decrease in BIM protein, suggesting that TGFβ-1 + dasatinib-induced apoptosis is mediated by Smad3 regulation of BIM. Dasatinib is only effective in killing EGFR mutant cells, which is shown in only 10% of NSCLCs. Therefore, the observation that wild-type EGFR lung cancers can be manipulated to render them sensitive to killing by dasatinib could have important implications for devising innovative and potentially more efficacious treatment strategies for this disease.
    PLoS ONE 12/2014; 9(12):e114131. DOI:10.1371/journal.pone.0114131 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dasatinib is an orally active nonselective tyrosine kinase inhibitor used to treat certain types of adult leukemia. By inhibiting PDGFR-β and SFKs in both tumor cells and tumor-associated endothelial cells, dasatinib inhibits tumor growth and angiogenesis. Herein, dasatinib derivatives modified with hydrophobic chains were prepared and evaluated for their in vitro antiproliferative selectivity and their in vivo antiangiogenic activity. For one of the derivatives, modified with a long perfluorinated chain, a significant enhancement in antiangiogenic activity was observed. Combined, these results suggest a possible generic route to modulate the angiostatic activity of drugs.
    ACS Medicinal Chemistry Letters 01/2015; 6(3). DOI:10.1021/ml500496u · 3.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Constitutive activation of epidermal growth factor receptor(EGFR) due to overexpression or mutation in tumor cells leads to dysregulated downstream cellular signaling pathways. Therefore, EGFR as well as its downstream effectors have been identified as important therapeutic targets. The FDA approved small-molecule inhibitors of EGFR, gefitinib (Iressa™) and erlotinib (Tarceva™), are clinically effective in a subset of non-small cell lung cancer (NSCLC) patients whose tumors harbor activating mutations within the kinase domain of EGFR. The current study examined effects of these drugs in 32D cells expressing native (WT) or oncogenic (L858R) EGFR as well as in cancer cell lines A431 and H3255. Distinct patterns for gefitinib and erlotinib inhibition of EGFR autophosphorylation at individual tyrosines were revealed for WT and L858R EGFR. Phosphorylation of Y845 has been shown to be important in cancer cells and Y1045 phosphorylation is linked to Cbl-mediated ubiquitination and degradation. Dramatic differences were observed by greater potency of these drugs for inhibiting downstream effectors for L858R EGFR including Cbl and STAT5. Selective targeting of Cbl, may play a role in oncogene addiction and effects on STAT5 identify features of signaling circuitry for L858R EGFR that contribute to drug sensitivity and clinical efficacy. These data provide new understanding of the EGFR signaling environment and suggest useful paradigms for predicting patient response to EGFR-targeted therapy as well as combination treatments. Implications: This study offers fundamental insights for understanding molecular mechanisms of drug sensitivity on oncogenic forms of EGFR and downstream signaling components as well as considerations for further drug optimization and design of combination therapy. Copyright © 2015, American Association for Cancer Research.
    Molecular Cancer Research 01/2015; 13(4). DOI:10.1158/1541-7786.MCR-14-0326 · 4.50 Impact Factor

Preview

Download
1 Download