Viroids: an Ariadne's thread into the RNA labyrinth.

Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Universidad Politécnica de Valencia, Avenida de los Naranjos s/n, 46022 Valencia, Spain.
EMBO Reports (Impact Factor: 7.86). 07/2006; 7(6):593-8. DOI: 10.1038/sj.embor.7400706
Source: PubMed

ABSTRACT Viroids are structurally, functionally and evolutionarily different from viruses. Despite their small, non-protein-encoding, single-stranded circular RNA genome, viroids can infect higher plants and cause certain diseases. Members of the two viroid families, Pospiviroidae and Avsunviroidae, have evolved to usurp the transcriptional machinery of their host nuclei and chloroplasts, respectively, in which replication proceeds through a rolling-circle mechanism involving RNA polymerization, cleavage and ligation. Remarkably, viroids subvert certain DNA-dependent RNA polymerases to transcribe RNA templates, and, in the family Avsunviroidae, post-transcriptional cleavage is catalysed by hammerhead ribozymes. Viroids are models for studying RNA evolution and for analysing RNA transport in plants, because they can move intracellularly, intercellularly through plasmodesmata and to distal parts of the plant through the vascular system. Viroids elicit RNA-silencing phenomena, which might mediate some of their biological properties, including pathogenesis. As some viroids behave as catalytic RNAs, they are regarded as remnants of the RNA world.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chrysanthemum stunt viroid (CSVd), a noncoding infectious RNA molecule, causes seriously economic losses of chrysanthemum for 3 or 4 years after its first infection. Monomeric cDNA clones of CSVd isolate SK1 (CSVd-SK1) were constructed in the plasmids pGEM-T easy vector and pUC19 vector. Linear positive-sense transcripts synthesized in vitro from the full-length monomeric cDNA clones of CSVd-SK1 could infect systemically tomato seedlings and chrysanthemum plants, suggesting that the linear CSVd RNA transcribed from the cDNA clones could be replicated as efficiently as circular CSVd in host species. However, direct inoculation of plasmid cDNA clones containing full-length monomeric cDNA of CSVd-SK1 failed to infect tomato and chrysanthemum and linear negative-sense transcripts from the plasmid DNAs were not infectious in the two plant species. The cDNA sequences of progeny viroid in systemically infected tomato and chrysanthemum showed a few substitutions at a specific nucleotide position, but there were no deletions and insertions in the sequences of the CSVd progeny from tomato and chrysanthemum plants.
    The plant pathology journal 03/2014; 30(1). · 0.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Viroids have been used as "graft transmissible dwarfing agents" (GTDA) in several countries, mainly to reduce growth of citrus trees, thus increasing their density in orchards. In the State of São Paulo, Brazil, plants of the acid lime 'Tahiti' are usually grafted with a complex of GTDA, presumably viroids. The aim of the present work was the identification and molecular characterization of the viroids infecting trees of acid lime 'Tahiti' displaying "Quebra galho" (bark-cracking). Viroids were identified and characterized by biological indexing in 'Etrog' citron, Northern-blot hybridization, RT-PCR, cloning and complete sequencing of the RNA genomes. Citrus exocortis viroid (CEVd), Hop stunt viroid (HSVd) and Citrus dwarfing viroid (CDVd) were found in different combinations. Although we have not been able to infer a direct relationship between the agronomical performance and symptom severity with the presence of a specific viroid or viroid combination, the differences in the severity of "Quebra-galho" symptoms among different trees is probably associated with the presence (or absence) of CEVd, with its interaction with other viroids perhaps determining the different phenotypes observed in the field.
    Tropical Plant Pathology 12/2009; 35(5):303-309. · 0.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Novel hepatitis D virus (HDV) RNA mutants carrying large fragment deletions were identified in the serum samples of two hepatitis B/D patients receiving antiviral therapy. Sequence analysis revealed that the deleted regions encompassed both ribozyme domains. The mutant persisted in the serum samples for at least 2 and 10 months respectively in the two patients, raising the question of whether such mutants could replicate in the absence of ribozyme domains. Thirty anti-HDV antibody-positive serum samples derived from 17 patients receiving antiviral therapy were submitted for RT-PCR detection of HDV RNA deletion mutants. Large fragment HDV RNA deletions were found in 4 patients. Of them, two had liver biopsy samples available. Northern blot analysis revealed high molecular weight HDV RNA replication intermediates, genomic and anti-genomic senses, in the liver tissues. Transfection of an in vitro transcribed HDV RNA deletion mutant (1.28 kb) into Huh7 and HepG2 cells also resulted in generation of high molecular weight HDV RNA species in the hepatoma cells (> 6.5 kb) with secretion of a 6.5 kb HDV RNA species into the medium. In conclusion, we discovered novel large fragment deletion mutants of HDV RNA in hepatitis B/D patients receiving antiviral therapy. Such mutants did not contain ribozyme domains but could replicate in the liver cells to generate high molecular weight but not unit-length HDV RNA.
    Biochemical and Biophysical Research Communications 06/2014; · 2.28 Impact Factor

Full-text (2 Sources)

Available from
May 15, 2014