Practical, catalytic, asymmetric synthesis of beta-lactones via a sequential ketene dimerization/hydrogenation process: Inhibitors of the thioesterase domain of fatty acid synthase

Department of Chemistry, Texas A & M University, P.O. Box 30012, College Station, Texas 77842-3012, USA.
The Journal of Organic Chemistry (Impact Factor: 4.64). 07/2006; 71(12):4549-58. DOI: 10.1021/jo060392d
Source: PubMed

ABSTRACT The recent finding that the FDA-approved antiobesity agent orlistat (tetrahydrolipstatin, Xenical) is a potent inhibitor of the thioesterase domain of fatty acid synthase (FAS) led us to develop a concise and practical asymmetric route to pseudosymmetric 3,4-dialkyl-cis-beta-lactones. The well-documented up-regulation of FAS in cancer cells makes this enzyme complex an interesting therapeutic target for cancer. The described route to 3,4-dialkyl-beta-lactones is based on a two-step process involving Calter's catalytic, asymmetric ketene dimerization of acid chlorides followed by a facial-selective hydrogenation leading to cis-substituted-beta-lactones. Importantly, the ketene dimer intermediates were found to be stable to flash chromatography, enabling opportunities for subsequent transformations of these optically active, reactive intermediates. Subsequent alpha-epimerization and alpha-alkylation or acylation led to trans-beta-lactones and beta-lactones bearing alpha-quaternary carbons, respectively. Several of the ketene dimers and beta-lactones displayed antagonistic activity (apparent Ki in the low micromolar range) in competition with a fluorogenic substrate toward a recombinant form of the thioesterase domain of fatty acid synthase. The best antagonist, a simple phenyl-substituted cis-beta-lactone 3d, displayed an apparent Ki (2.5 +/- 0.5 microM) of only approximately 10-fold lower than that of orlistat (0.28 +/- 0.06 microM). In addition, mechanistic studies of the ketene dimerization process by ReactionView infrared spectroscopy support previous findings that ketene formation is rate determining.

Download full-text


Available from: Daniel Romo, Jun 20, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fatty acid synthase (FASN), the enzyme responsible for de novo synthesis of free fatty acids, is up-regulated in many cancers. FASN is essential for cancer cell survival and contributes to drug resistance and poor prognosis. However, it is not expressed in most nonlipogenic normal tissues. Thus, FASN is a desirable target for drug discovery. Although different FASN inhibitors have been identified, none has successfully moved into clinical use. In this study, using in silico screening of an FDA-approved drug database, we identified proton pump inhibitors (PPIs) as effective inhibitors of the thioesterase activity of human FASN. Further investigation showed that PPIs inhibited proliferation and induced apoptosis of cancer cells. Supplementation of palmitate, the end product of FASN catalysis, rescued cancer cells from PPI-induced cell death. These findings provide new evidence for the mechanism by which this FDA-approved class of compounds may be acting on cancer cells.
    Journal of Medicinal Chemistry 12/2014; 58(2). DOI:10.1021/jm501543u · 5.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: trans-β-Lactones are a versatile and useful class of compounds, but reliable methods for their direct synthesis are still limited. Addressing this problem, we present herein two catalysts for the regioselective carbonylation of cis-disubstituted epoxides. The two catalysts show high activities and opposing regioselectivities so that either one of the two possible β-lactone regioisomers can be obtained selectively.
    The Journal of Organic Chemistry 10/2014; 79(24). DOI:10.1021/jo501899e · 4.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: β-Lactones are a privileged structural motif as enzyme inhibitors and chemical probes, particularly for the inhibition of enzymes from the serine hydrolase class. Herein, we demonstrate that cross-metathesis (CM) of α-methylene-β-lactones offers rapid access to structurally diverse, previously unexplored β-lactones. Combining this approach with competitive activity-based protein profiling (ABPP) identified lead β-lactone inhibitors/probes for several serine hydrolases, including disease-associated enzymes and enzymes of uncharacterized function. The structural diversity afforded by the α-methylene-β-lactone scaffold thus expands the landscape of serine hydrolases that can be targeted by small-molecule inhibitors and should further the functional characterization of enzymes from this class through the optimization of target-selective probes. Copyright © 2014 Elsevier Ltd. All rights reserved.
    Bioorganic & Medicinal Chemistry Letters 01/2015; 25(2):317-21. DOI:10.1016/j.bmcl.2014.11.038 · 2.33 Impact Factor