Practical, Catalytic, Asymmetric Synthesis of β-Lactones via a Sequential Ketene Dimerization/Hydrogenation Process: Inhibitors of the Thioesterase Domain of Fatty Acid Synthase

Department of Chemistry, Texas A & M University, P.O. Box 30012, College Station, Texas 77842-3012, USA.
The Journal of Organic Chemistry (Impact Factor: 4.72). 07/2006; 71(12):4549-58. DOI: 10.1021/jo060392d
Source: PubMed

ABSTRACT The recent finding that the FDA-approved antiobesity agent orlistat (tetrahydrolipstatin, Xenical) is a potent inhibitor of the thioesterase domain of fatty acid synthase (FAS) led us to develop a concise and practical asymmetric route to pseudosymmetric 3,4-dialkyl-cis-beta-lactones. The well-documented up-regulation of FAS in cancer cells makes this enzyme complex an interesting therapeutic target for cancer. The described route to 3,4-dialkyl-beta-lactones is based on a two-step process involving Calter's catalytic, asymmetric ketene dimerization of acid chlorides followed by a facial-selective hydrogenation leading to cis-substituted-beta-lactones. Importantly, the ketene dimer intermediates were found to be stable to flash chromatography, enabling opportunities for subsequent transformations of these optically active, reactive intermediates. Subsequent alpha-epimerization and alpha-alkylation or acylation led to trans-beta-lactones and beta-lactones bearing alpha-quaternary carbons, respectively. Several of the ketene dimers and beta-lactones displayed antagonistic activity (apparent Ki in the low micromolar range) in competition with a fluorogenic substrate toward a recombinant form of the thioesterase domain of fatty acid synthase. The best antagonist, a simple phenyl-substituted cis-beta-lactone 3d, displayed an apparent Ki (2.5 +/- 0.5 microM) of only approximately 10-fold lower than that of orlistat (0.28 +/- 0.06 microM). In addition, mechanistic studies of the ketene dimerization process by ReactionView infrared spectroscopy support previous findings that ketene formation is rate determining.

Download full-text


Available from: Daniel Romo, Sep 28, 2015
41 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A highly diastereoselective, nucleophile-promoted bis-cyclization process, employing readily available and tractable keto acid substrates, is described. This methodology provides concise access to bicyclic- and tricyclic-beta-lactones bearing tertiary carbinol centers and quaternary carbons, greatly extending the scope of previous routes to bicyclic-beta-lactones from aldehyde acid substrates. The utility of the method was demonstrated by application to an enantioselective synthesis of (+)-dihydroplakevulin A. This and related processes may be revealing a subtle interplay between [2+2] cycloaddition and nucleophile-catalyzed aldol lactonization (NCAL) reaction manifolds.
    Organic Letters 10/2006; 8(19):4363-6. DOI:10.1021/ol061816t · 6.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Concise syntheses of orlistat (Xenical), a two-carbon transposed orlistat derivative, and valilactone are described that employ the tandem Mukaiyama aldol-lactonization (TMAL) process as a key step. This process allows facile modification of the alpha-side chain. Versatile strategies for modifying the delta-side chain are described, involving cuprate addition and olefin metathesis. Comparative antagonistic activity of these derivatives toward a recombinant form of the thioesterase domain of fatty acid synthase is reported along with comparative activity-based profiling.
    Organic Letters 10/2006; 8(20):4497-500. DOI:10.1021/ol061651o · 6.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The expression and activity of Fatty Acid Synthase (FASN; the sole enzyme capable of the reductive de novo synthesis of long-chain fatty acids from acetyl-CoA, malonyl-CoA, and nicotinamide adenine dinucleotide phosphate -NADPH-) is extremely low in nearly all nonmalignant adult tissues, whereas it is significantly up-regulated or activated in many cancer types, thus creating the potential for a large therapeutic index. Since the pioneering observation that inhibition of FASN activity by the mycotoxin cerulenin preferentially kills cancer cells and retards the growth of tumors in xenografts models, numerous in vitro and in vivo studies have confirmed the potential of FASN as a target for antineoplastic intervention. Other FASN inhibitors such as the cerulenin derivative C75, the beta-lactone orlistat, the green tea polyphenol epigallocatechin-3-gallate (EGCG) and other naturally occurring flavonoids (i.e., luteolin, quercetin, and kaempferol), as well as the antibiotic triclosan, have been identified and have been shown to limit cancer cell growth by inducing apoptotic cell death. Though the exact mode of action of these FASN inhibitors is under discussion, it has been revealed that depletion of end-product fatty acids, toxic intracellular accumulation of supra-physiological concentrations of the FASN substrate malonyl-CoA and/or limited membrane synthesis and/or functioning by altered production of phospholipids partitioning into detergent-resistant membrane microdomains (lipid raft-aggregates), can explain, at least in part, the cytostatic, cytotoxic as well as the apoptotic effects occurring upon pharmacological inhibition of FASN activity in cancer cells. Moreover, several cancer-associated molecular features including nonfunctioning p53, overexpression of the Her-2/neu (erbB-2) oncogene, and hyperactivation of the PI-3'K down-stream effector protein kinase B (AKT), appear to determine an exacerbated sensitivity to FASN inhibition-induced cancer cell death. Although few of these inhibitors are expected to be "exclusively" selective for FASN, the potential of FASN as a target for antineoplastic intervention has eventually been confirmed by RNA interference (RNAi)-knockdown of FASN. Certainly, future studies should definitely elucidate the ultimate biochemical link between FASN inhibition and cancer cell death. Although the combination of FASN structural complexity and until recently the lack of X-ray crystallography data of mammalian FASN created a significant challenge in the exploitation of FASN as a valuable target for drug development, it is hoped that the improvement in the selectivity and potency of forthcoming novel FASN-targeted small molecule inhibitors by taking advantage, for instance, of the recent 4.5 A resolution X-ray crystallographic map of mammalian FASN, will direct the foundation of a new family of chemotherapeutic agents in cancer history.
    Current pharmaceutical biotechnology 01/2007; 7(6):483-93. DOI:10.2174/138920106779116928 · 2.51 Impact Factor
Show more