Instruments for Causal Inference: An Epidemiologist's Dream?

Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA.
Epidemiology (Impact Factor: 6.18). 08/2006; 17(4):360-72. DOI: 10.1097/01.ede.0000222409.00878.37
Source: PubMed

ABSTRACT The use of instrumental variable (IV) methods is attractive because, even in the presence of unmeasured confounding, such methods may consistently estimate the average causal effect of an exposure on an outcome. However, for this consistent estimation to be achieved, several strong conditions must hold. We review the definition of an instrumental variable, describe the conditions required to obtain consistent estimates of causal effects, and explore their implications in the context of a recent application of the instrumental variables approach. We also present (1) a description of the connection between 4 causal models-counterfactuals, causal directed acyclic graphs, nonparametric structural equation models, and linear structural equation models-that have been used to describe instrumental variables methods; (2) a unified presentation of IV methods for the average causal effect in the study population through structural mean models; and (3) a discussion and new extensions of instrumental variables methods based on assumptions of monotonicity.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Discussion of "Instrumental Variables: An Econometrician's Perspective" by Guido W. Imbens [arXiv:1410.0163].
    Statistical Science 10/2014; 29(3). DOI:10.1214/14-STS491 · 1.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: b>Background: Mendelian randomization uses genetic variants, assumed to be instrumental variables for a particular exposure, to estimate the causal effect of that exposure on an outcome. If the instrumental variable criteria are satisfied, the resulting estimator is consistent even in the presence of unmeasured confounding and reverse causation. Methods: We extend the Mendelian randomization paradigm to investigate more complex networks of relationships between variables, in particular where some of the effect of an exposure on the outcome may operate through an intermediate variable (a mediator). If instrumental variables for the exposure and mediator are available, direct and indirect effects of the exposure on the outcome can be estimated, for example using either a regression-based method or structural equation models. The direction of effect between the exposure and a possible mediator can also be assessed. Methods are illustrated in an applied example considering causal relationships between body mass index, C-reactive protein and uric acid. Results: These estimators are consistent in the presence of unmeasured confounding if, in addition to the instrumental variable assumptions, the effects of both the exposure on the mediator and the mediator on the outcome are homogeneous across individuals and linear without interactions. Nevertheless, a simulation study demonstrates that even considerable heterogeneity in these effects does not lead to bias in the estimates. Conclusions: These methods can be used to estimate direct and indirect causal effects in a mediation setting, and have potential for the investigation of more complex networks between multiple interrelated exposures and disease outcomes.
    International Journal of Epidemiology 08/2014; DOI:10.1093/ije/dyu176 · 9.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The identification of causal peer effects (also known as social contagion or induction) from observational data in social networks is challenged by two distinct sources of bias: latent homophily and unobserved confounding. In this paper, we investigate how causal peer effects of traits and behaviors can be identified using genes (or other structurally isomorphic variables) as instrumental variables (IV) in a large set of data generating models with homophily and confounding. We use directed acyclic graphs to represent these models and employ multiple IV strategies and report three main identification results. First, using a single fixed gene (or allele) as an IV will generally fail to identify peer effects if the gene affects past values of the treatment. Second, multiple fixed genes/alleles, or, more promisingly, time-varying gene expression, can identify peer effects if we instrument exclusion violations as well as the focal treatment. Third, we show that IV identification of peer effects remains possible even under multiple complications often regarded as lethal for IV identification of intra-individual effects, such as pleiotropy on observables and unobservables, homophily on past phenotype, past and ongoing homophily on genotype, inter-phenotype peer effects, population stratification, gene expression that is endogenous to past phenotype and past gene expression, and others. We apply our identification results to estimating peer effects of body mass index (BMI) among friends and spouses in the Framingham Heart Study. Results suggest a positive causal peer effect of BMI between friends.
    Biometrics 04/2014; 70(3). DOI:10.1111/biom.12172 · 1.52 Impact Factor