Article

Estrogens protect pancreatic beta-cells from apoptosis and prevent insulin-deficient diabetes mellitus in mice.

Division of Diabetes, Endocrinology and Metabolism, Department of , Baylor College of Medicine, Houston, TX 77030, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 07/2006; 103(24):9232-7. DOI: 10.1073/pnas.0602956103
Source: PubMed

ABSTRACT In diabetes, the death of insulin-producing beta-cells by apoptosis leads to insulin deficiency. The lower prevalence of diabetes in females suggests that female sex steroids protect from beta-cell injury. Consistent with this hypothesis, 17beta-estradiol (estradiol) manifests antidiabetic actions in humans and rodents. In addition, estradiol has antiapoptotic actions in cells that are mediated by the estrogen receptor-a (ERalpha), raising the prospect that estradiol antidiabetic function may be due, in part, to a protection of beta-cell apoptosis via ERalpha. To address this question, we have used mice that were rendered estradiol-deficient or estradiol-resistant by targeted disruption of aromatase (ArKO) or ERalpha (alphaERKO) respectively. We show here that in both genders, ArKO(-/-) mice are vulnerable to beta-cell apoptosis and prone to insulin-deficient diabetes after exposure to acute oxidative stress with streptozotocin. In these mice, estradiol treatment rescues streptozotocin-induced beta-cell apoptosis, helps sustain insulin production, and prevents diabetes. In vitro, in mouse pancreatic islets and beta-cells exposed to oxidative stress, estradiol prevents apoptosis and protects insulin secretion. Estradiol protection is partially lost in beta-cells and islets treated with an ERalpha antagonist and in alphaERKO islets. Accordingly, alphaERKO mice are no longer protected by estradiol and display a gender nonspecific susceptibility to oxidative injury, precipitating beta-cell apoptosis and insulin-deficient diabetes. Finally, the predisposition to insulin deficiency can be mimicked in WT mice by pharmacological inhibition of ERalpha by using the antagonist tamoxifen. This study demonstrates that estradiol, acting, at least in part, through ERalpha, protects beta-cells from oxidative injury and prevents diabetes in mice of both genders.

0 Bookmarks
 · 
136 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Energy metabolism in humans is tuned to distinct sex-specific functions that potentially reflect the unique requirements in females for gestation and lactation, whereas male metabolism may represent a default state. These differences are the consequence of the action of sex chromosomes and sex-specific hormones, including estrogens and progesterone in females and androgens in males. In humans, sex-specific specialization is associated with distinct body-fat distribution and energy substrate-utilization patterns; i.e., females store more lipids and have higher whole-body insulin sensitivity than males, while males tend to oxidize more lipids than females. These patterns are influenced by the menstrual phase in females, and by nutritional status and exercise intensity in both sexes. This minireview focuses on sex-specific mechanisms in lipid and glucose metabolism and their regulation by sex hormones, with a primary emphasis on studies in humans and the most relevant pre-clinical model of human physiology, non-human primates.
    Frontiers in Endocrinology 01/2014; 5:241. DOI:10.3389/fendo.2014.00241
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aims/hypothesis Oestrogens have previously been shown to exert beta cell protective, glucose-lowering effects in mouse models. Therefore, the recent development of a glucagon-like peptide-1 (GLP-1)–oestrogen conjugate, which targets oestrogen into cells expressing GLP-1 receptors, offers an opportunity for a cell-specific and enhanced beta cell protection by oestrogen. The purpose of this study was to compare the effects of GLP-1 and GLP-1–oestrogen during beta cell failure under glucolipotoxic conditions. Methods Male New Zealand obese (NZO) mice were treated with daily s.c. injections of GLP-1 and GLP-1–oestrogen, respectively. Subsequently, the effects on energy homeostasis and beta cell integrity were measured. In order to clarify the targeting of GLP-1–oestrogen, transcription analyses of oestrogen-responsive genes in distinct tissues as well as microarray analyses in pancreatic islets were performed. Results In contrast to GLP-1, GLP-1–oestrogen significantly decreased food intake resulting in a substantial weight reduction, preserved normoglycaemia, increased glucose tolerance and enhanced beta cell protection. Analysis of hypothalamic mRNA profiles revealed elevated expression of Pomc and Leprb. In livers from GLP-1–oestrogen-treated mice, expression of lipogenic genes was attenuated and hepatic triacylglycerol levels were decreased. In pancreatic islets, GLP-1–oestrogen altered the mRNA expression to a pattern that was similar to that of diabetes-resistant NZO females. However, conventional oestrogen-responsive genes were not different, indicating rather indirect protection of pancreatic beta cells. Conclusions/interpretation GLP-1–oestrogen efficiently protects NZO mice against carbohydrate-induced beta cell failure by attenuation of hyperphagia. In this regard, targeted delivery of oestrogen to the hypothalamus by far exceeds the anorexigenic capacity of GLP-1 alone.
    Diabetologia 12/2014; 58(3). DOI:10.1007/s00125-014-3478-3 · 6.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Defects in insulin secretion play a central role in the pathogenesis of type 2 diabetes, yet the mechanisms driving beta-cell dysfunction remain poorly understood, and therapies to preserve glucose-dependent insulin release are inadequate. We report a luminescent insulin secretion assay that enables large-scale investigations of beta-cell function, created by inserting Gaussia luciferase into the C-peptide portion of proinsulin. Beta-cell lines expressing this construct cosecrete luciferase and insulin in close correlation, under both standard conditions or when stressed by cytokines, fatty acids, or ER toxins. We adapted the reporter for high-throughput assays and performed a 1,600-compound pilot screen, which identified several classes of drugs inhibiting secretion, as well as glucose-potentiated secretagogues that were confirmed to have activity in primary human islets. Requiring 40-fold less time and expense than the traditional ELISA, this assay may accelerate the identification of pathways governing insulin secretion and compounds that safely augment beta-cell function in diabetes. Copyright © 2015 Elsevier Inc. All rights reserved.
    Cell Metabolism 01/2015; 21(1):126-37. DOI:10.1016/j.cmet.2014.12.010 · 16.75 Impact Factor

Full-text (3 Sources)

Download
86 Downloads
Available from
May 21, 2014