Article

Endoplasmic reticulum aminopeptidase 1 (ERAP1) trims MHC class I-presented peptides in vivo and plays an important role in immunodominance.

Department of Pathology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 07/2006; 103(24):9202-7. DOI: 10.1073/pnas.0603095103
Source: PubMed

ABSTRACT CD8(+) T cells respond to short peptides bound to MHC class I molecules. Although most antigenic proteins contain many sequences that could bind to MHC class I, few of these peptides actually stimulate CD8(+) T cell responses. Moreover, the T cell responses that are generated often follow a very reproducible hierarchy to different peptides for reasons that are poorly understood. We find that the loss of a single enzyme, endoplasmic reticulum aminopeptidase 1 (ERAP1), in the antigen-processing pathway results in a marked shift in the hierarchy of immunodominance in viral infections, even when the responding T cells have the same T cell receptor repertoire. In mice, ERAP1 is the major enzyme that trims precursor peptides in the endoplasmic reticulum and, in this process, can generate or destroy antigenic peptides. Consequently, when ERAP1 is lost, the immune response to some viral peptides is reduced, to others increased, and to yet others unchanged. Therefore, many epitopes must be initially generated as precursors that are normally trimmed by ERAP1 before binding to MHC class I, whereas others are normally degraded by ERAP1 to lengths that are too short to bind to MHC class I. Moreover, peptide trimming and the resulting abundance of peptide-MHC complexes are dominant factors in establishing immunodominance.

0 Followers
 · 
111 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: For more than 40 y, expression of HLA-B27 has been strongly associated with the chronic inflammatory disease Ankylosing Spondylitis (AS); however, the mechanisms underlying this association are still unknown. Single nucleotide polymorphisms within the aminopeptidase endoplasmic reticulum aminopeptidase 1 (ERAP1), which is essential for trimming peptides before they are presented to T cells by major histocompatibility complex (MHC) class I molecules, have been linked with disease. We show that ERAP1 is a highly polymorphic molecule comprising allotypes of single nucleotide polymorphisms. The prevalence of specific ERAP1 allotypes is different between AS cases and controls. Both chromosomal copies of ERAP1 are codominantly expressed, and analysis of allotype pairs provided clear stratification of individuals with AS versus controls. Functional analyses demonstrated that ERAP1 allotype pairs seen in AS cases were poor at generating optimal peptide ligands for binding to murine H-2K(b) and -D(b) and the AS-associated HLA-B*2705. We therefore provide strong evidence that polymorphic ERAP1 alters protein function predisposing an individual to AS via its influence on the antigen processing pathway.
    Proceedings of the National Academy of Sciences 11/2014; 111(49). DOI:10.1073/pnas.1408882111 · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endoplasmic reticulum aminopeptidase 1 and 2 (ERAP1 and ERAP2) are key components on the pathway that generates antigenic epitopes for presentation to cytotoxic T-lymphocytes (CTLs). Coding single nucleotide polymorphisms (SNPs) in these enzymes have been associated with pre-disposition to several major human diseases including inflammatory diseases with autoimmune etiology, viral infections, and virally induced cancer. The function of these enzymes has been demonstrated to affect CTL and natural killer cell responses toward healthy and malignant cells as well as the production of inflammatory cytokines. Recent studies have demonstrated that SNPs in ERAP1 and ERAP2 can affect their ability to generate or destroy antigenic epitopes and define the immunopeptidome. In this review, we examine the potential role of these enzymes and their polymorphic states on the generation of cytotoxic responses toward malignantly transformed cells. Given the current state-of-the-art, it is possible that polymorphic variation in these enzymes may contribute to the individual's pre-disposition to cancer through altered generation or destruction of tumor antigens that can facilitate tumor immune evasion.
    Frontiers in Oncology 12/2014; 4:363. DOI:10.3389/fonc.2014.00363
  • [Show abstract] [Hide abstract]
    ABSTRACT: The endoplasmic reticulum aminopeptidase 1 (ERAP1) performs a major role in antigen processing, trimming N-terminally extended peptides to the final epitope for presentation by major histocompatibility complex class I molecules. Recent genome-wide association studies have identified single nucleotide polymorphisms (SNPs) within ERAP1 as being associated with disease, in particular ankylosing spondylitis (AS). AS is a polygenic chronic inflammatory disease with a strong genetic link to HLA-B27 known for over 40 years. The association of ERAP1 SNPs with AS susceptibility is only observed in HLA-B27-positive individuals, which intersect on the antigen processing pathway. Recent evidence examining the trimming activity of polymorphic ERAP1 highlights its role in generating peptides for loading onto and stabilizing HLA-B27, and the consequent alterations in the interaction of specific NK cell receptors, and the activation of the unfolded protein response as important in the mechanism of disease pathogenesis. Here, we discuss the recent genetic association findings linking ERAP1 SNPs with AS disease susceptibility and the effect of these variants on ERAP1 function, highlighting mechanisms by which AS may arise. The identification of these functional variants of ERAP1 may lead to better stratification of AS patients by providing a diagnostic tool and a potential therapeutic target.
    Immunologic Research 12/2014; 60(2-3). DOI:10.1007/s12026-014-8576-2 · 3.53 Impact Factor

Preview

Download
2 Downloads
Available from