Article

The globular tail domain of myosin Va functions as an inhibitor of the myosin Va motor

Department of Physiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA.
Journal of Biological Chemistry (Impact Factor: 4.6). 09/2006; 281(31):21789-98. DOI: 10.1074/jbc.M602957200
Source: PubMed

ABSTRACT The actin-activated ATPase activity of full-length mammalian myosin Va is well regulated by Ca2+, whereas that of truncated myosin Va without the C-terminal globular tail domain (GTD) is not. Here, we have found that exogenous GTD is capable of inhibiting the actin-activated ATPase activity of GTD-deleted myosin Va. A series of truncated constructs of myosin Va further showed that the entire length of the first coiled-coil (coil-1) of the tail domain is critical for GTD-dependent regulation of myosin Va and that deletion of 58 residues from the C-terminal end of coil-1 markedly hampered regulation. Negative staining electron microscopy revealed that GTD-deleted myosin Va formed a "Y"-shaped structure, which was converted to a triangular shape, similar to the structure of full-length myosin Va in the inhibited state, by addition of exogenous GTD. In contrast, the triangular shape was not observed when the C-terminal 58 residues of coil-1 were deleted, even in the presence of exogenous GTD. Based on these results, we propose a model for the formation of the inhibited state of myosin Va. GTD binds to the C-terminal end of coil-1. The neck-tail junction of myosin Va is flexible, and the long neck enables the head domain to reach the GTD associated with the end of coil-1. Once the head interacts with the GTD, the triangular inhibited conformation is stabilized. Consistent with this model, we found that shortening of the neck of myosin Va by two IQ motifs abolished the regulation by GTD, whereas regulation was partially restored by shortening of coil-1 by an amount comparable to that of the two IQ motifs.

0 Followers
 · 
87 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: LC8 dynein light chains (DYNLL) are conserved homodimeric eukaryotic hub proteins that participate in diverse cellular processes. Among the binding partners of DYNLL2, myosin 5a (myo5a) is a motor protein involved in cargo transport. Here we provide a profound characterization of the DYNLL2 binding motif of myo5a in free and DYNLL2 bound form by using NMR spectroscopy, X-ray crystallography and molecular dynamics simulations. In the free form the DYNLL2 binding region, located in an intrinsically disordered domain of the myo5a tail, has a nascent helical character. The motif becomes structured and folds into a β-strand upon binding to DYNLL2. Despite differences of the myo5a sequence from the consensus binding motif, one peptide is accommodated in each of the parallel DYNLL2 binding grooves, as for all other known partners. Interestingly, while the core motif shows similar interaction pattern in the binding groove as seen in other complexes, the flanking residues make several additional contacts, thereby lengthening the binding motif. The N-terminal extension folds back and partially blocks the free edge of the β-sheet formed by the binding motif itself. The C-terminal extension contacts the dimer interface and interacts with symmetry related residues of the second myo5a peptide. The involvement of flanking residues of the core binding site of myo5a could modify the quaternary structure of the full-length myo5a and affect its biological functions. Our results deepen the knowledge of the diverse partner recognition of DYNLL proteins and provide an example of a Janus-faced linear motif.
    Biochemistry 10/2014; DOI:10.1021/bi500574z · 3.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The human genome contains 39 myosin genes, divided up into 12 different classes. The structure, cellular function and biochemical properties of many of these isoforms remain poorly characterized and there is still some controversy as to whether some myosin isoforms are monomers or dimers. Myosin isoforms 6 and 10 contain a stable single α-helical (SAH) domain, situated just after the canonical lever. The SAH domain is stiff enough to be able to lengthen the lever allowing the myosin to take a larger step. In addition, atomic force microscopy and atomistic simulations show that SAH domains unfold at relatively low forces and have a high propensity to refold. These properties are likely to be important for protein function, enabling motors to carry cargo in dense actin networks, and other proteins to remain attached to binding partners in the crowded cell.
    Biochemical Society Transactions 02/2015; 43(1):58-63. DOI:10.1042/BST20140302 · 3.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Myosins are a large superfamily of actin-dependent molecule motors that carry out many functions in cells. Some myosins are cargo carriers that move processively along actin which means that a single molecule of myosin can take many ATP-dependent steps on actin per initial encounter. Other myosins are designed to work in large ensembles such as myosin thick filaments. In vitro motility assays are a powerful method for studying the function of myosins. These assays in general use small amounts of protein, are simple to implement, and can be done on microscopes commonly found in many laboratories. There are two basic versions of the assay which involve different geometries. In the sliding actin in vitro motility assay, myosin molecules are bound to a coverslip surface in a simply constructed microscopic flow chamber. Fluorescently labeled actin filaments are added to the flow chamber in the presence of ATP, and the movement of these actin filaments powered by the surface-bound myosins is observed. This assay has been used widely for a variety of myosins including both processive and nonprocessive ones. From this assay, one can easily measure the rate at which myosin is translocating actin. The single-molecule motility assay uses an inverted geometry compared to the sliding actin in vitro motility assay. It is most useful for processive myosins. Here, actin filaments are affixed to the coverslip surface. Fluorescently labeled single molecules of myosins (usually ones with processive kinetics) are introduced, and the movement of single molecules along the actin filaments is observed. This assay typically uses total internal reflection fluorescent (TIRF) microscopy to reduce the background signal arising from myosins in solution. From this assay, one can measure the velocity of movement, the frequency of movement, and the run length. If sufficient photons can be collected, one can use Gaussian fitting of the point spread function to determine the position of the labeled myosin to within a few nanometers which allows for measurement of the step size and the stepping kinetics. Together, these two assays are powerful tools to elucidate myosin function.
    EXS 01/2014; 105:193-210. DOI:10.1007/978-3-0348-0856-9_9