Article

The globular tail domain of myosin Va functions as an inhibitor of the myosin Va motor

Department of Physiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA.
Journal of Biological Chemistry (Impact Factor: 4.6). 09/2006; 281(31):21789-98. DOI: 10.1074/jbc.M602957200
Source: PubMed

ABSTRACT The actin-activated ATPase activity of full-length mammalian myosin Va is well regulated by Ca2+, whereas that of truncated myosin Va without the C-terminal globular tail domain (GTD) is not. Here, we have found that exogenous GTD is capable of inhibiting the actin-activated ATPase activity of GTD-deleted myosin Va. A series of truncated constructs of myosin Va further showed that the entire length of the first coiled-coil (coil-1) of the tail domain is critical for GTD-dependent regulation of myosin Va and that deletion of 58 residues from the C-terminal end of coil-1 markedly hampered regulation. Negative staining electron microscopy revealed that GTD-deleted myosin Va formed a "Y"-shaped structure, which was converted to a triangular shape, similar to the structure of full-length myosin Va in the inhibited state, by addition of exogenous GTD. In contrast, the triangular shape was not observed when the C-terminal 58 residues of coil-1 were deleted, even in the presence of exogenous GTD. Based on these results, we propose a model for the formation of the inhibited state of myosin Va. GTD binds to the C-terminal end of coil-1. The neck-tail junction of myosin Va is flexible, and the long neck enables the head domain to reach the GTD associated with the end of coil-1. Once the head interacts with the GTD, the triangular inhibited conformation is stabilized. Consistent with this model, we found that shortening of the neck of myosin Va by two IQ motifs abolished the regulation by GTD, whereas regulation was partially restored by shortening of coil-1 by an amount comparable to that of the two IQ motifs.

0 Followers
 · 
88 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Directed transport of the mRNA binding protein, zipcode binding protein1 (ZBP1), into developing axons is believed to play an important role in mRNA localization and local protein synthesis. The role of molecular motors in this process is unclear. We elucidated a role for myosin Va (MyoVa) to modulate the axonal localization and transport of ZBP1 in axons. Using cultured rat hippocampal neurons, ZBP1 colocalized with MyoVa in axons and growth cones. Interaction of MyoVa with ZBP1 was evident by coimmunoprecipitation of endogenous and overexpressed proteins. Inhibition of MyoVa function with the globular tail domain (GTD) of MyoVa protein or short hairpin RNA led to an accumulation of ZBP1 in axons. Live cell imaging of mCherryZBP1 in neurons expressing GTD showed an increase in the number of motile particles, run length, and stimulated anterograde moving ZBP1 particles, suggesting that MyoVa controls availability of ZBP1 for microtubule-dependent transport. These findings suggest a novel regulatory role for MyoVa in the transport of ZBP1 within axons.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 10/2012; 32(43):15133-41. DOI:10.1523/JNEUROSCI.2006-12.2012 · 6.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The actomyosin system is conserved throughout eukaryotes. Although F-actin is essential for cell growth and plant development, roles of the associated myosins are poorly understood. Using multiple gene knockouts in Arabidopsis thaliana, we investigated functional profiles of five class XI myosins, XI-K, XI-1, XI-2, XI-B, and XI-I. Plants lacking three myosins XI showed stunted growth and delayed flowering, whereas elimination of four myosins further exacerbated these defects. Loss of myosins led to decreased leaf cell expansion, with the most severe defects observed in the larger leaf cells. Root hair length in myosin-deficient plants was reduced approximately 10-fold, with quadruple knockouts showing morphological abnormalities. It was also found that trafficking of Golgi and peroxisomes was entirely myosin dependent. Surprisingly, myosins were required for proper organization of F-actin and the associated endoplasmic reticulum networks, revealing a novel, architectural function of the class XI myosins. These results establish critical roles of myosin-driven transport and F-actin organization during polarized and diffuse cell growth and indicate that myosins are key factors in plant growth and development.
    The Plant Cell 06/2010; 22(6):1883-97. DOI:10.1105/tpc.110.076315 · 9.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Myosin 5a is a two-headed actin-dependent motor that transports various cargoes in cells. Its enzymology and mechanochemistry have been extensively studied in vitro. It is a processive motor that takes multiple 36nm steps on actin. The enzymatic activity of myosin 5 is regulated by an intramolecular folding mechanism whereby its lever arms fold back against the coiled-coil tail such that the motor domains directly bind the globular tail domains. We show that the structure seen in individual folded molecules is consistent with electron density map of two-dimensional crystals of the molecule. In this compact state, the actin-activated MgATPase activity of the molecule is markedly inhibited and the molecule cannot move processively on surface bound actin filaments. The actin-activated MgATPase activity of myosin 5a is activated by increasing the calcium concentration or by binding of a cargo-receptor molecule, melanophilin, in vitro. However, calcium binding to the calmodulin light chains results in dissociation of some of the calmodulin which disrupts the ability of myosin 5a to move on actin filaments in vitro. Thus we propose that the physiologically relevant activation pathway in vivo involves binding of cargo-receptor proteins.
    Biochemical and Biophysical Research Communications 05/2008; 369(1):176-81. DOI:10.1016/j.bbrc.2007.11.109 · 2.28 Impact Factor