Article

Identification and characterization of D-AKAP1 as a major adipocyte PKA and PP1 binding protein.

Department of Biological Sciences, University of Calgary, Calgary, Alta., Canada T2N 4N1.
Biochemical and Biophysical Research Communications (Impact Factor: 2.28). 08/2006; 346(1):351-7. DOI: 10.1016/j.bbrc.2006.05.138
Source: PubMed

ABSTRACT Protein kinase A (PKA) plays an important role in the regulation of lipid metabolism in adipocytes. The activity of PKA is known to be modulated by its specific location in the cell, a process mediated by A-kinase anchoring proteins (AKAPs). In order to examine the subcellular localization of PKA in this tissue we performed a search for AKAP proteins in adipocytes. We purified a 120 kDa protein which can bind both the regulatory subunit of PKA as well as the catalytic subunit of protein phosphatase 1 (PP1). This protein was found to be enriched in the lipid droplet fraction of primary adipocytes and was identified as D-AKAP1. This protein may play an important role in the regulation of PKA in adipocytes.

0 Bookmarks
 · 
86 Views
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ca(2+) sensitization of smooth muscle contraction depends upon the activities of protein kinases, including Rho-associated kinase, that phosphorylate the myosin phosphatase targeting subunit (MYPT1) at Thr(697) and/or Thr(855) (rat sequence numbering) to inhibit phosphatase activity and increase contractile force. Both Thr residues are preceded by the sequence RRS, and it has been suggested that phosphorylation at Ser(696) prevents phosphorylation at Thr(697). However, the effects of Ser(854) and dual Ser(696)-Thr(697) and Ser(854)-Thr(855) phosphorylations on myosin phosphatase activity and contraction are unknown. We characterized a suite of MYPT1 proteins and phosphospecific antibodies for specificity toward monophosphorylation events (Ser(696), Thr(697), Ser(854), and Thr(855)), Ser phosphorylation events (Ser(696)/Ser(854)) and dual Ser/Thr phosphorylation events (Ser(696)-Thr(697) and Ser(854)-Thr(855)). Dual phosphorylation at Ser(696)-Thr(697) and Ser(854)-Thr(855) by cyclic nucleotide-dependent protein kinases had no effect on myosin phosphatase activity, whereas phosphorylation at Thr(697) and Thr(855) by Rho-associated kinase inhibited phosphatase activity and prevented phosphorylation by cAMP-dependent protein kinase at the neighboring Ser residues. Forskolin induced phosphorylation at Ser(696), Thr(697), Ser(854), and Thr(855) in rat caudal artery, whereas U46619 induced Thr(697) and Thr(855) phosphorylation and prevented the Ser phosphorylation induced by forskolin. Furthermore, pretreatment with forskolin prevented U46619-induced Thr phosphorylations. We conclude that cross-talk between cyclic nucleotide and RhoA signaling pathways dictates the phosphorylation status of the Ser(696)-Thr(697) and Ser(854)-Thr(855) inhibitory regions of MYPT1 in situ, thereby regulating the activity of myosin phosphatase and contraction.
    Journal of Biological Chemistry 09/2012; 287(43):36356-69. · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondria are best known for their role as cellular power plants, but they also serve as signaling hubs, regulating cellular proliferation, differentiation, and survival. A kinase anchoring protein 1 (AKAP1) is a scaffold protein that recruits protein kinase A (PKA) and other signaling proteins, as well as RNA, to the outer mitochondrial membrane. AKAP1 thereby integrates several second messenger cascades to modulate mitochondrial function and associated physiological and pathophysiological outcomes. Here, we review what is currently known about AKAP1's macromolecular interactions in health and disease states, including obesity. We also discuss dynamin-related protein 1 (Drp1), the enzyme that catalyzes mitochondrial fission, as one of the key substrates of the PKA/AKAP1 signaling complex in neurons. Recent evidence suggests that AKAP1 has critical roles in neuronal development and survival, which are mediated by inhibitory phosphorylation of Drp1 and maintenance of mitochondrial integrity.
    The international journal of biochemistry & cell biology 01/2014; · 4.89 Impact Factor