Distinct orientation of the alloreactive monoclonal CD8 T cell activation program by three different peptide/MHC complexes.

Centre d'Immunologie de Marseille-Luminy, CNRS-INSERM-Universite de la Méditerranée, Campus de Luminy, Marseille, France.
European Journal of Immunology (Impact Factor: 4.97). 08/2006; 36(7):1856-66. DOI: 10.1002/eji.200635895
Source: PubMed

ABSTRACT We have characterized three different programs of activation for alloreactive CD8 T cells expressing the BM3.3 TCR, their elicitation depending on the characteristics of the stimulating peptide/MHC complex. The high-affinity interaction between the TCR and the K(b)-associated endogenous peptide pBM1 (INFDFNTI) induced a complete differentiation program into effector cells correlated with sustained ERK activation. The K(bm8) variant elicited a partial activation program with delayed T cell proliferation, poor CTL activity and undetectable ERK phosphorylation; this resulted from a low-avidity interaction of TCR BM3.3 with a newly identified endogenous peptide, pBM8 (SQYYYNSL). Interestingly, mismatched pBM1/K(bm8) complexes induced a split response in BM3.3 T cells, with total reconstitution of T cell proliferation but defective generation of CTL activity that was correlated with strong but shortened ERK phosphorylation. Crystal structures highlight the molecular basis for the higher stability of pBM8/K(bm8) compared to pBM1/K(bm8) complexes that exist in two conformers. This study illustrates the importance of the stability of both peptide/MHC and peptide/MHC-TCR interactions for induction of sustained signaling required to induce optimal CTL effector functions. Subtle allelic structural variations, amplified by peptide selection, may thus orient distinct outcomes of alloreactive TCR-based therapies.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Antigen presenting cells present processed peptides via their major histocompatibility (MH) complex to the T cell receptors (TRs) of T cells. If a peptide is immunogenic, a signaling cascade can be triggered within the T cell. However, the binding of different peptides and/or different TRs to MH is also known to influence the spatial arrangement of the MH α-helices which could itself be an additional level of T cell regulation. In this study, we introduce a new methodology based on differential geometric parameters to describe MH deformations in a detailed and comparable way. For this purpose, we represent MH α-helices by curves. On the basis of these curves, we calculate in a first step the curvature and torsion to describe each α-helix independently. In a second step, we calculate the distribution parameter and the conical curvature of the ruled surface to describe the relative orientation of the two α-helices. On the basis of four different test sets, we show how these differential geometric parameters can be used to describe changes in the spatial arrangement of the MH α-helices for different biological challenges. In the first test set, we illustrate on the basis of all available crystal structures for (TR)/pMH complexes how the binding of TRs influences the MH helices. In the second test set, we show a cross evaluation of different MH alleles with the same peptide and the same MH allele with different peptides. In the third test set, we present the spatial effects of different TRs on the same peptide/MH complex. In the fourth test set, we illustrate how a severe conformational change in an α-helix can be described quantitatively. Taken together, we provide a novel structural methodology to numerically describe subtle and severe alterations in MH α-helices for a broad range of applications. © 2013 Wiley Periodicals, Inc.
    Journal of Computational Chemistry 05/2013; · 3.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Peptide/MHC complexes recognized by alloreactive T lymphocytes (TLs) have been identified, but their contribution to in vivo allo-rejection is not known. We previously characterized the peptide pBM1, highly represented among endogenous H-2K(b) (K(b) )-associated peptides and critically required to induce full activation of H-2(k) monoclonal CD8(+) TLs expressing the cognate TCR-BM3.3. Here, we asked whether a pBM1/K(b) -specific TL subset could be detected within a polyclonal TL population rejecting allogeneic cells in vivo. We show that the proportion of pBM1/K(b) -binding CD8(+) TLs increased from <0.04% in naïve mice to 3% of activated CD44(+) CD8(+) TLs in H-2(k) mice rejecting K(b) -expressing cells. Among these, TCR-Vβ2 usage was greatly enriched, and 75% of them shared a TCR-Vβ2 CDR3β motif with the prototype TCR-BM3.3. Fewer than 5% of K(b) -reactive CD44(+) CD8(+) TLs not binding pBM1/K(b) displayed this CDR3β motif. We found that the recurrent CDR3β motif of pBM1/K(b) -binding TLs was assembled from distinct V/D/J recombination events, suggesting that it is recruited upon immunization for its optimal TCR-peptide/MHC fit. Thus, a CDR3β motif generated by a process akin to "convergent recombination" accounts for a sizable fraction of the alloreactive anti-K(b) TCR repertoire.
    European Journal of Immunology 05/2011; 41(8):2414-23. · 4.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Over the past two decades, structural biology has shown how T-cell receptors engage peptide/major histocompatibility complex (MHC) complexes and provided insight into the mechanisms underlying antigen specificity and cross-reactivity. Here we review and contextualize our contributions, which have emphasized the influence of structural changes and molecular flexibility. A repeated observation is the presence of conformational melding, in which the T-cell receptor (TCR), peptide, and in some cases, MHC protein cooperatively adjust in order for recognition to proceed. The structural changes reflect the intrinsic dynamics of the unligated proteins. Characterization of the dynamics of unligated TCR shows how binding loop motion can influence TCR cross-reactivity as well as specificity towards peptide and MHC. Examination of peptide dynamics indicates not only peptide-specific variation but also a peptide dependence to MHC flexibility. This latter point emphasizes that the TCR engages a composite peptide/MHC surface and that physically the receptor makes little distinction between the peptide and MHC. Much additional evidence for this can be found within the database of available structures, including our observations of a peptide dependence to the TCR binding mode and structural compensations for altered interatomic interactions, in which lost TCR-peptide interactions are replaced with TCR-MHC interactions. The lack of a hard-coded physical distinction between peptide and MHC has implications not only for specificity and cross-reactivity but also the mechanisms underlying MHC restriction as well as attempts to modulate and control TCR recognition.
    Immunological Reviews 11/2012; 250(1):10-31. · 12.16 Impact Factor


Available from
May 26, 2014