Article

Ternary complex formation between HvMYBS3 and other factors involved in transcriptional control in barley seeds.

Laboratorio de Bioquímica y Biología Molecular, Dpto. de Biotecnología-Centro de Biotecnología y Genómica de Plantas-UPM, ETS Ingenieros Agrónomos, Ciudad Universitaria s/n, 28040 Madrid, Spain.
The Plant Journal (Impact Factor: 6.58). 08/2006; 47(2):269-81. DOI: 10.1111/j.1365-313X.2006.02777.x
Source: PubMed

ABSTRACT The SHAQKYF R1MYB transcription factor (TF) HvMYBS3 from barley is an activator of gene expression both during endosperm development and in aleurone cells upon seed germination. Its mRNA was detected as early as 10 days after flowering in developing barley endosperm, with a peak at 18 days, and in aleurone cells at 8 h after water imbibition, as shown by Northern blot and in situ hybridization analyses. The HvMYBS3 protein expressed in bacteria binds to oligonucleotides containing a GATA core derived from the promoters of: (i) the developing endosperm gene Itr1 (5'-GATAAGATA-3') encoding trypsin inhibitor BTI-CMe, and (ii) the post-germinating aleurone gene Amy6.4 (5'-TATCCAC-3'/5'-GTGGATA-3') encoding a high-pI alpha-amylase. Transient expression experiments in co-bombarded developing endosperms and in barley aleurone layers demonstrated that HvMYBS3 trans-activated transcription both from Itr1 and Amy6.4 promoters, in contrast with a previously reported seed-expressed R1MYB, HvMCB1, which was an activator of Itr1 and a transcriptional repressor of the Amy6.4 gene. In the yeast three-hybrid system, the HvMYBS3 protein formed a ternary complex with BPBF and BLZ2, two important seed TFs. However, no binary interactions could be detected between HvMYBS3 and BLZ2 or between HvMYBS3 and BPBF.

0 Bookmarks
 · 
99 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: BdDOF24 interacting with BdGAMYB regulates the BdCathB gene upon germination. During barley seed germination, hydrolytic enzymes (α-amylases, proteases, etc.) synthesized in the aleurone layer in response to gibberellins (GA), catalyse the mobilization of storage reserves accumulated in the endosperm during seed maturation. In Brachypodium distachyon, the BdCathB gene that encodes a Cathepsin B-like thiol-protease, orthologous to the wheat Al21 and barley HvCathB, is highly induced in germinating seeds and its expression is regulated by transcription factors (TFs) encoded by genes BdGamyb and BdDof24, orthologous to the barley HvGamyb and BPBF-HvDof24, respectively. Transcripts of both TF genes increase during germination and treatments with abscisic acid (ABA) or paclobutrazol (PAC, an inhibitor of GA biosynthesis) decrease mRNA expression of BdGamyb but do not affect that of BdDof24. Besides, proteins BdDOF24 and BdGAMYB interact in yeast-2 hybrid systems and in plant nuclei, and in transient expression assays in aleurone layers BdDOF24 is a transcriptional repressor and BdGAMYB is an activator of the BdCathB promoter, as occurs with the putative orthologous in barley BPBF-HvDOF24 and HvGAMYB. However, when both TFs are co-bombarded, BdDOF24 enhances the activation driven by BdGAMYB while BPBF-HvDOF24 strongly decreases the HvGAMYB-mediated activation of the BdCathB promoter. The different results obtained when BdDOF24 and BPBF-HvDOF24 interact with BdGAMYB and HvGAMYB are discussed.
    Planta 06/2014; · 3.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The concentration and composition of the gliadin and glutenin seed storage proteins (SSPs) in wheat flour are the most important determinants of its end-use value. In cereals, the synthesis of SSPs is predominantly regulated at the transcriptional level by a complex network involving at least five cis-elements in gene promoters. The high-molecular-weight glutenin subunits (HMW-GS) are encoded by two tightly linked genes located on the long arms of group 1 chromosomes. Here, we sequenced and annotated the HMW-GS gene promoters of 22 electrophoretic wheat alleles to identify putative cis-regulatory motifs. We focused on 24 motifs known to be involved in SSP gene regulation. Most of them were identified in at least one HMW-GS gene promoter sequence. A common regulatory framework was observed in all the HMW-GS gene promoters, as they shared conserved cis-regulatory modules (CCRMs) including all the five motifs known to regulate the transcription of SSP genes. This common regulatory framework comprises a composite box made of the GATA motifs and GCN4-like Motifs (GLMs) and was shown to be functional as the GLMs are able to bind a bZIP transcriptional factor SPA (Storage Protein Activator). In addition to this regulatory framework, each HMW-GS gene promoter had additional motifs organized differently. The promoters of most highly expressed x-type HMW-GS genes contain an additional box predicted to bind R2R3-MYB transcriptional factors. However, the differences in annotation between promoter alleles could not be related to their level of expression. In summary, we identified a common modular organization of HMW-GS gene promoters but the lack of correlation between the cis-motifs of each HMW-GS gene promoter and their level of expression suggests that other cis-elements or other mechanisms regulate HMW-GS gene expression.-regulatory modules (CCRMs), high-molecular-weight glutenin subunits (HMW-GS), transcriptional regulation, seed storage proteins (SSPs), transcription factors (TFs), wheat (Triticum aestivum L) INTRODUCTION
    Frontiers in Plant Science 11/2014; (:Article 621. · 3.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fruits come in an impressive array of shapes, sizes, and consistencies, and also display a huge diversity in biochemical/metabolite profiles, wherein lies their value as rich sources of food, nutrition, and pharmaceuticals. This is in addition to their fundamental function in supporting and dispersing the developing and mature seeds for the next generation. Understanding developmental processes such as fruit development and ripening, particularly at the genetic level, was once largely restricted to model and crop systems for practical and commercial reasons, but with the expansion of developmental genetic and evo-devo tools/analyses we can now investigate and compare aspects of fruit development in species spanning the angiosperms. We can superimpose recent genetic discoveries onto the detailed characterization of fruit development and ripening conducted with primary considerations such as yield and harvesting efficiency in mind, as well as on the detailed description of taxonomically relevant characters. Based on our own experience we focus on two very morphologically distinct and evolutionary distant fruits: the capsule of opium poppy, and the grain or caryopsis of cereals. Both are of massive economic value, but because of very different constituents; alkaloids of varied pharmaceutical value derived from secondary metabolism in opium poppy capsules, and calorific energy fuel derived from primary metabolism in cereal grains. Through comparative analyses in these and other fruit types, interesting patterns of regulatory gene function diversification and conservation are beginning to emerge.
    Journal of Experimental Botany 04/2014; · 5.79 Impact Factor

Full-text

Download
0 Downloads