Hypertrophy of cerebral arterioles in mice deficient in expression of the gene for CuZn superoxide dismutase

Department of Pathology, University of Iowa College of Medicine, Iowa City, IA 52242, USA.
Stroke (Impact Factor: 5.72). 08/2006; 37(7):1850-5. DOI: 10.1161/01.STR.0000227236.84546.5a
Source: PubMed


Reactive oxygen species are believed to be an important determinant of vascular growth. We examined effects of genetic deficiency of copper-zinc superoxide dismutase (CuZnSOD; SOD1) on structure and function of cerebral arterioles.
Systemic arterial pressure (SAP) and cross-sectional area of the vessel wall (CSA) and superoxide (O2-) levels (relative fluorescence of ethidium [ETH]) were examined in maximally dilated cerebral arterioles in mice with targeted disruption of one (+/-) or both (-/-) genes encoding CuZnSOD. Wild-type littermates served as controls. Vasodilator responses were tested in separate groups of mice.
CSA and ETH were significantly increased (P<0.05) in both CuZnSOD+/- and CuZnSOD-/- mice (CSA=435+/-24 and 541+/-48 microm2; ETH=18+/-1 and 34+/-2%) compared with wild-type mice (CSA=327+/-28 microm2; ETH=6%). Furthermore, the increases in CSA and ETH relative to wild-type mice were significantly greater (P<0.05) in CuZnSOD-/- mice than in CuZnSOD+/- mice (CSA=108 versus 214 microm2; ETH=12 versus 28%). In addition, dilatation of cerebral arterioles in response to acetylcholine, but not nitroprusside, was reduced by approximately 25% in CuZnSOD+/- (P<0.075) and 50% in CuZnSOD-/- mice (P<0.05) compared with wild-type mice.
Cerebral arterioles in CuZnSOD+/- and CuZnSOD-/- mice undergo marked hypertrophy. These findings provide the first direct evidence in any blood vessel that CuZnSOD normally inhibits vascular hypertrophy suggesting that CuZnSOD plays a major role in regulation of cerebral vascular growth. The findings also suggest a gene dosing effect of CuZnSOD for increases in O2-, induction of cerebral vascular hypertrophy and impaired endothelium-dependent dilatation.

15 Reads
  • Source
    • "than in left-sided cerebral arterioles (39 ± 3, 28 ± 2, 32 ± 2, and 10 ± 1 mmHg; SP, DP, MP, and PP, resp.). Furthermore, the levels of SP, DP, MP, and PP in left-sided arterioles in aortic banded mice were similar to those we observed previously in normotensive WT mice [5] [6]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Oxidative stress is involved in many hypertension-related vascular diseases in the brain, including stroke and dementia. Thus, we examined the role of genetic deficiency of NADPH oxidase subunit Nox2 in the function and structure of cerebral arterioles during hypertension. Arterial pressure was increased in right-sided cerebral arterioles with transverse aortic banding for 4 weeks in 8-week-old wild-type (WT) and Nox2-deficient (-/y) mice. Mice were given N(G)-nitro-L-arginine methyl ester (L-NAME, 10 mg/kg) or vehicle to drink. We measured the reactivity in cerebral arterioles through open cranial window in anesthetized mice and wall cross-sectional area and superoxide levels ex vivo. Aortic constriction increased systolic and pulse pressures in right-sided carotid arteries in all groups of mice. Ethidium fluorescence showed increased superoxide in right-sided cerebral arterioles in WT, but not in Nox2-/y mice. Dilation to acetylcholine, but not sodium nitroprusside, was reduced, and cross-sectional areas were increased in the right-sided arterioles in WT, but were unchanged in Nox2-/y mice. L-NAME reduced dilation to acetylcholine but did not result in hypertrophy in right-sided arterioles of Nox2-/y mice. In conclusion, hypertension-induced superoxide production derived from Nox2-containing NADPH oxidase promotes hypertrophy and causes endothelial dysfunction in cerebral arterioles, possibly involving interaction with nitric oxide.
    International Journal of Hypertension 03/2013; 2013:793630. DOI:10.1155/2013/793630
  • Source
    • "The fact that collagen I/III expression was augmented after I/R seems to explain, at least in part, the observed hypertrophic remodeling. Furthermore, there is a large body of evidence suggesting a key role for oxidative stress in hypertrophic remodeling of blood vessels (Baumbach et al., 2006; Jiménez-Altayó et al., 2009) and heart (Takimoto and Kass, 2007). Thus, the increase in "
    [Show abstract] [Hide abstract]
    ABSTRACT: Mesenteric ischemia/reperfusion (I/R) is associated with high rates of morbidity and mortality. We studied the effect of mesenteric I/R on structural and mechanical properties of rat mesenteric resistance artery (MRA) that, once disrupted, might impact the outcome of this devastating clinical condition. Superior mesenteric artery from Wistar–Kyoto rats was occluded (90 min) and reperfused (24 h). The effect of tezosentan, a dual endothelin (ET)-receptor antagonist, was studied in ischemic (IO) and sham-operated (SO) animals. MRA structure and mechanics were assessed by pressure myography. Nuclei distribution, elastin content and organization, collagen I/III and ET-1 expression, ET-1 plasma levels, superoxide anion () production, and mRNA levels of NAD(P)H-oxidase subunits were measured. To assess ET-1 effects on production, MRA from non-operated rats were incubated in culture medium with ET-1. Mesenteric I/R increased MRA wall thickness (P < 0.05) and cross-sectional area (P < 0.05) but decreased wall stiffness (P < 0.05). Arterial remodeling was paralleled by enhancement of: (i) collagen I/III expression (P < 0.01), ET-1 expression (P < 0.05), and formation (P < 0.01) in the vessel wall; (ii) number of internal elastic lamina (IEL) fenestrae (P < 0.05); and (iii) plasma levels of ET-1 (P < 0.05). Moreover, ET-1 increased (P < 0.05) production in cultured MRA. Tezosentan prevented hypertrophic remodeling and collagen I/III deposition, and enhanced production, but it did not affect the decreased wall stiffness after mesenteric I/R. These results indicate that 90 min occlusion/24 h reperfusion induces hypertrophic remodeling of MRA linked to ET-1-mediated increase of collagen and . Decreased stiffness may be associated with increased number of IEL fenestrae. The resulting MRA remodeling, initially adaptive, might become maladaptive contributing to the pathology and poor outcome of mesenteric I/R, and might be a valuable treatment target for mesenteric I/R.
    Frontiers in Physiology 01/2011; 2:118. DOI:10.3389/fphys.2011.00118 · 3.53 Impact Factor
  • Source
    • "Reactive oxygen species trigger multiple cellular events eliciting specific cellular responses, including growth (Li et al., 1997; Zafari et al., 1998; DeMarco et al., 2008). For instance, hypertrophic response was present in cerebral arterioles of mice deficient in one or both genes encoding Cu,Zn-SOD (Baumbach et al., 2006). Alterations in autoregulation increase the risk of cerebral ischemia when cerebral blood vessels fail to compensate changes in perfusion pressure (Immink et al., 2004). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Cerebral ischemia followed by reperfusion alters vessel properties of brain arteries in rats, inducing an inflammatory response and excessive generation of reactive oxygen species. This study investigated the participation of oxidative stress on vessel properties after ischemia/reperfusion and the beneficial effects of 3,4-dihydro-6-hydroxy-7-methoxy-2,2-dimethyl-1(2H)-benzopyran (CR-6). The right middle cerebral artery was occluded (90 min) and reperfused (24 h). Sham-operated animals were used as controls. Ischemic rats were treated either with CR-6 (100 mg/kg in 1 ml olive oil) or vehicle (1 ml olive oil) administered orally at 2 and 8 h after the onset of ischemia. The structural, mechanical, and myogenic properties of the middle cerebral artery (MCA) were assessed by pressure myography. Superoxide anion ( ) production was evaluated by ethidium fluorescence, and protein tyrosine nitrosylation was determined by immunofluorescence. Infarct volume was smaller in rats treated with CR-6. In MCA, ischemia/reperfusion increased wall thickness, cross-sectional area, wall/lumen, and decreased wall stress. CR-6 treatment prevented all of these changes induced by ischemia/reperfusion. However, impaired myogenic response and larger lumen diameter in active conditions observed after ischemia/reperfusion were not modified by CR-6. Treatment with CR-6 prevented the increase in production and partially prevented the enhanced protein tyrosine nitrosylation that occurred in response to ischemia/reperfusion. Our findings suggest that oxidative stress is involved in the alterations of MCA properties observed after ischemia/reperfusion and that CR-6 induces protection.
    Journal of Pharmacology and Experimental Therapeutics 09/2009; 331(2):429-36. DOI:10.1124/jpet.109.157131 · 3.97 Impact Factor
Show more

Similar Publications

Preview (2 Sources)

15 Reads