The methylation of the C-terminal region of hnRNPQ (NSAP1) is important for its nuclear localization.

Centro de Biologia Molecular Estrutural, Laboratório Nacional de Luz Síncrotron, Campinas, SP, Brazil.
Biochemical and Biophysical Research Communications (Impact Factor: 2.28). 08/2006; 346(2):517-25. DOI: 10.1016/j.bbrc.2006.05.152
Source: PubMed

ABSTRACT Protein arginine methylation is an irreversible post-translational protein modification catalyzed by a family of at least nine different enzymes entitled PRMTs (protein arginine methyl transferases). Although PRMT1 is responsible for 85% of the protein methylation in human cells, its substrate spectrum has not yet been fully characterized nor are the functional consequences of methylation for the protein substrates well understood. Therefore, we set out to employ the yeast two-hybrid system in order to identify new substrate proteins for human PRMT1. We were able to identify nine different PRMT1 interacting proteins involved in different aspects of RNA metabolism, five of which had been previously described either as substrates for PRMT1 or as functionally associated with PRMT1. Among the four new identified possible protein substrates was hnRNPQ3 (NSAP1), a protein whose function has been implicated in diverse steps of mRNA maturation, including splicing, editing, and degradation. By in vitro methylation assays we were able to show that hnRNPQ3 is a substrate for PRMT1 and that its C-terminal RGG box domain is the sole target for methylation. By further studies with the inhibitor of methylation Adox we provide evidence that hnRNPQ1-3 are methylated in vivo. Finally, we demonstrate by immunofluorescence analysis of HeLa cells that the methylation of hnRNPQ is important for its nuclear localization, since Adox treatment causes its re-distribution from the nucleus to the cytoplasm.


Available from: Alexandre J C Quaresma, May 29, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To accelerate high-density interactome mapping, we developed a yeast two-hybrid interaction screening approach involving short-read second-generation sequencing (Y2H-seq) with improved sensitivity and a quantitative scoring readout allowing rapid interaction validation. We applied Y2H-seq to investigate enzymes involved in protein methylation, a largely unexplored post-translational modification. The reported network of 523 interactions involving 22 methyltransferases or demethylases is comprehensively annotated and validated through coimmunoprecipitation experiments and defines previously undiscovered cellular roles of nonhistone protein methylation.
    Nature Methods 03/2013; DOI:10.1038/nmeth.2397 · 25.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Translation control often operates via remodeling of messenger ribonucleoprotein particles. The poly(A) binding protein (PABP) simultaneously interacts with the 3' poly(A) tail of the mRNA and the eukaryotic translation initiation factor 4G (eIF4G) to stimulate translation. PABP also promotes miRNA-dependent deadenylation and translational repression of target mRNAs. We demonstrate that isoform 2 of the mouse heterogeneous nuclear protein Q (hnRNP-Q2/SYNCRIP) binds poly(A) by default when PABP binding is inhibited. In addition, hnRNP-Q2 competes with PABP for binding to poly(A) in vitro. Depleting hnRNP-Q2 from translation extracts stimulates cap-dependent and IRES-mediated translation that is dependent on the PABP/poly(A) complex. Adding recombinant hnRNP-Q2 to the extracts inhibited translation in a poly(A) tail-dependent manner. The displacement of PABP from the poly(A) tail by hnRNP-Q2 impaired the association of eIF4E with the 5' m(7)G cap structure of mRNA, resulting in the inhibition of 48S and 80S ribosome initiation complex formation. In mouse fibroblasts, silencing of hnRNP-Q2 stimulated translation. In addition, hnRNP-Q2 impeded let-7a miRNA-mediated deadenylation and repression of target mRNAs, which require PABP. Thus, by competing with PABP, hnRNP-Q2 plays important roles in the regulation of global translation and miRNA-mediated repression of specific mRNAs.
    PLoS Biology 05/2013; 11(5):e1001564. DOI:10.1371/journal.pbio.1001564 · 11.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: PRMT6 is a protein arginine methyltransferase that has been implicated in transcriptional regulation, DNA repair, and human immunodeficiency virus pathogenesis. Only few substrates of this enzyme are known and therefore its cellular role is not well understood. To identify in an unbiased manner substrates and potential regulators of PRMT6 we have used a yeast two-hybrid approach. We identified 36 new putative partners for PRMT6 and we validated the interaction in vivo for 7 of them. In addition, using in vitro methylation assay we identified 4 new substrates for PRMT6, extending the involvement of this enzyme to other cellular processes beyond its well-established role in gene expression regulation. Holistic approaches create molecular connections that allow to test functional hypotheses. The assembly of PRMT6 protein network allowed us to formulate functional hypotheses which led to the discovery of new molecular partners for the architectural transcription factor HMGA1a, a known substrate for PRMT6, and to provide evidences for a modulatory role of HMGA1a on the methyltransferase activity of PRMT6.
    PLoS ONE 11/2013; 8(1):e53750. DOI:10.1371/journal.pone.0053750 · 3.53 Impact Factor