Article

The methylation of the C-terminal region of hnRNPQ (NSAP1) is important for its nuclear localization.

Centro de Biologia Molecular Estrutural, Laboratório Nacional de Luz Síncrotron, Campinas, SP, Brazil.
Biochemical and Biophysical Research Communications (Impact Factor: 2.28). 08/2006; 346(2):517-25. DOI: 10.1016/j.bbrc.2006.05.152
Source: PubMed

ABSTRACT Protein arginine methylation is an irreversible post-translational protein modification catalyzed by a family of at least nine different enzymes entitled PRMTs (protein arginine methyl transferases). Although PRMT1 is responsible for 85% of the protein methylation in human cells, its substrate spectrum has not yet been fully characterized nor are the functional consequences of methylation for the protein substrates well understood. Therefore, we set out to employ the yeast two-hybrid system in order to identify new substrate proteins for human PRMT1. We were able to identify nine different PRMT1 interacting proteins involved in different aspects of RNA metabolism, five of which had been previously described either as substrates for PRMT1 or as functionally associated with PRMT1. Among the four new identified possible protein substrates was hnRNPQ3 (NSAP1), a protein whose function has been implicated in diverse steps of mRNA maturation, including splicing, editing, and degradation. By in vitro methylation assays we were able to show that hnRNPQ3 is a substrate for PRMT1 and that its C-terminal RGG box domain is the sole target for methylation. By further studies with the inhibitor of methylation Adox we provide evidence that hnRNPQ1-3 are methylated in vivo. Finally, we demonstrate by immunofluorescence analysis of HeLa cells that the methylation of hnRNPQ is important for its nuclear localization, since Adox treatment causes its re-distribution from the nucleus to the cytoplasm.

Download full-text

Full-text

Available from: Alexandre J C Quaresma, Jun 30, 2015
0 Followers
 · 
130 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In eukaryotes, messenger RNA biogenesis depends on the ordered and precise assembly of a nuclear messenger ribonucleoprotein particle (mRNP) during transcription. This process requires a well-orchestrated and dynamic sequence of molecular recognition events by specific RNA-binding proteins. Arginine methylation is a posttranslational modification found in a plethora of RNA-binding proteins responsible for mRNP biogenesis. These RNA-binding proteins include both heterogeneous nuclear ribonucleoproteins (hnRNPs) and serine/arginine-rich (SR) proteins. In this paper, I discuss the mechanisms of action by which arginine methylation modulates various facets of mRNP biogenesis, and how the collective consequences of this modification impart the specificity required to generate a mature, translational- and export-competent mRNP.
    04/2011; 2011:163827. DOI:10.4061/2011/163827
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Eukaryotic gene expression is regulated on different levels ranging from pre-mRNA processing to translation. One of the most characterized families of RNA-binding proteins is the group of hnRNPs: heterogenous nuclear ribonucleoproteins. Members of this protein family play important roles in gene expression control and mRNAs metabolism. In the cytoplasm, several hnRNPs proteins are involved in RNA-related processes and they can be frequently found in two specialized structures, known as GW-bodies (GWbs), previously known as processing bodies: PBs, and stress granules, which may be formed in response to specific stimuli. GWbs have been early reported to be involved in the mRNA decay process, acting as a site of mRNA degradation. In a similar way, stress granules (SGs) have been described as cytoplasmic aggregates, which contain accumulated mRNAs in cells under stress conditions and present reduced or inhibited translation. Here, we characterized the hnRNP Q localization after different stress conditions. hnRNP Q is a predominantly nuclear protein that exhibits a modular organization and several RNA-related functions. Our data suggest that the nuclear localization of hnRNP Q might be modified after different treatments, such as: PMA, thapsigargin, arsenite and heat shock. Under different stress conditions, hnRNP Q can fully co-localize with the endoplasmatic reticulum specific chaperone, BiP. However, under stress, this protein only co-localizes partially with the proteins: GW182-GWbs marker protein and TIA-1 stress granule component.
    Experimental Cell Research 02/2009; 315(6):968-80. DOI:10.1016/j.yexcr.2009.01.012 · 3.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The formation of new infectious human immunodeficiency type 1 virus (HIV-1) mainly relies on the homo-multimerization of the viral structural polyprotein Pr55Gag and on the recruitment of host factors. We have previously shown that the double-stranded RNA-binding protein Staufen 1 (Stau1), likely through an interaction between its third double-stranded RNA-binding domain (dsRBD3) and the nucleocapsid (NC) domain of Pr55Gag, participates in HIV-1 assembly by influencing Pr55Gag multimerization. We now report the fine mapping of Stau1/Pr55Gag association using co-immunoprecipitation and live cell bioluminescence resonance energy transfer (BRET) assays. On the one hand, our results show that the Stau1-Pr55Gag interaction requires the integrity of at least one of the two zinc fingers in the NC domain of Pr55Gag but not that of the NC N-terminal basic region. Disruption of both zinc fingers dramatically impeded Pr55Gag multimerization and virus particle release. In parallel, we tested several Stau1 deletion mutants for their capacity to influence Pr55Gag multimerization using the Pr55Gag/Pr55Gag BRET assay in live cells. Our results revealed that a molecular determinant of 12 amino acids at the N-terminal end of Stau1 is necessary to increase Pr55Gag multimerization and particle release. However, this region is not required for Stau1 interaction with the viral polyprotein Pr55Gag. These data highlight that Stau1 is a modular protein and that Stau1 influences Pr55Gag multimerization via 1) an interaction between its dsRBD3 and Pr55Gag zinc fingers and 2) a regulatory domain within the N-terminus that could recruit host machineries that are critical for the completion of new HIV-1 capsids.
    Retrovirology 02/2008; 5:41. DOI:10.1186/1742-4690-5-41 · 4.77 Impact Factor