RUNX3 protein is overexpressed in human basal cell carcinomas.

Department of Pathology, National University Hospital, Yong Loo Lin Medical School, National University of Singapore (NUS), Singapore, Singapore.
Oncogene (Impact Factor: 7.36). 01/2007; 25(58):7646-9. DOI:10.1038/sj.onc.1209739
Source: PubMed

ABSTRACT Basal cell carcinomas (BCC), which are the most common form of skin malignancy, are invariably associated with the deregulation of the Sonic Hedgehog (Shh) signalling pathway. As such, BCC represent a unique model for the study of interactions of the Shh pathway with other genes and pathways. We constructed a tissue microarray (TMA) of 75 paired BCC and normal skin and analysed the expression of beta-catenin and RUNX3, nuclear effectors of the wingless-Int (Wnt) and bone morphogenetic protein/transforming growth factor-beta pathways, respectively. In line with previous reports, we observed varying subcellular expression pattern of beta-catenin in BCC, with 31 cases (41%) showing nuclear accumulation. In contrast, all the BCC cases tested by the TMA showed RUNX3 protein uniformly overexpressed in the nuclei of the cancer cells. Analysis by Western blotting and DNA sequencing indicates that the overexpressed protein is normal and full-length, containing no mutation in the coding region, implicating RUNX3 as an oncogene in certain human cancers. Our results indicate that although the deregulation of Wnt signalling could contribute to the pathogenesis of a subset of BCC, RUNX3 appears to be a universal downstream mediator of a constitutively active Shh pathway in BCC.

0 0
  • [show abstract] [hide abstract]
    ABSTRACT: RUNX3 aberrations play a pivotal role in the oncogenesis of breast, gastric, colon, skin and lung tissues. The aim of this study was to characterize further the expression of RUNX3 in lung cancers. To achieve this, a lung cancer tissue microarray (TMA), frozen lung cancer tissues and lung cell lines were examined for RUNX3 expression by immunohistochemistry, while the TMA was also examined for EGFR and p53 expression. RUNX3 promoter methylation status, and EGFR and KRAS mutation status were also investigated. Inactivation of RUNX3 was observed in 70% of the adenocarcinoma samples, and this was associated with promoter hypermethylation but not biased to EGFR/KRAS mutations. Our results suggest a central role of RUNX3 downregulation in pulmonary adenocarcinoma, which may not be dependent of other established cancer-causing pathways and may have important diagnostic and screening implications.
    Pathology & Oncology Research 06/2012; 18(4):783-92. · 1.56 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The dorsal habenular nuclei (Dh) of the zebrafish are characterized by significant left-right differences in gene expression, anatomy, and connectivity. Notably, the lateral subnucleus of the Dh (LsDh) is larger on the left side of the brain than on the right, while the medial subnucleus (MsDh) is larger on the right compared to the left. A screen for mutations that affect habenular laterality led to the identification of the sec61a-like 1(sec61al1) gene. In sec61al1(c163) mutants, more neurons in the LsDh and fewer in the MsDh develop on both sides of the brain. Generation of neurons in the LsDh occurs more rapidly and continues for a longer time period in mutants than in WT. Expression of Nodal pathway genes on the left side of the embryos is unaffected in mutants, as is the left sided placement of the parapineal organ, which promotes neurogenesis in the LsDh of WT embryos. Ultrastructural analysis of the epithalamus indicates that ventricular precursor cells, which form an epithelium in WT embryos, lose apical-basal polarity in sec61al1(c163) mutants. Our results show that in the absence of sec61al1, an excess of precursor cells for the LsDh exit the ventricular region and differentiate, resulting in formation of bilaterally symmetric habenular nuclei.
    Developmental Biology 09/2011; 360(1):44-57. · 3.87 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Despite decreasing incidence and mortality, gastric cancer remains the second leading cause of cancer-related deaths in the world. Successful management of gastric cancer is hampered by lack of highly sensitive and specific biomarkers especially for early cancer detection. Cell surface proteins that are aberrantly expressed between normal and cancer cells are potentially useful for cancer imaging and therapy due to easy accessibility of these targets. Combining two-phase partition and isobaric tags for relative and absolute quantification methods, we compared the relative expression levels of membrane proteins between non-cancer and gastric cancer cells. About 50% of the dataset were found to be plasma membrane and associated proteins using this approach (compared to only 12% in whole cell analysis), several of which have never been previously implicated in gastric cancer. Upregulation of SLC3A2 in gastric cancer cells were validated by immunoblotting of a panel of 13 gastric cancer cell lines and immunohistochemistry on tissue microarrays comprising 85 matched pairs of normal and tumor tissues. Immunofluorescence and Immunohistochemistry both confirmed the plasma membrane localization of SLC3A2 in gastric cancer cells. The data supported the notion that SLC3A2 is a potential biomarker that could be exploited for molecular imaging-based detection of gastric cancer.
    Journal of Proteome Research 11/2012; · 5.06 Impact Factor

Full-text (2 Sources)

Available from
Apr 13, 2014