Article

Als2-deficient mice exhibit disturbances in endosome trafficking associated with motor behavioral abnormalities.

Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, 980 West 28th Avenue, Vancouver, BC, Canada V5Z 4H4.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 07/2006; 103(25):9595-600. DOI: 10.1073/pnas.0510197103
Source: PubMed

ABSTRACT ALS2 is an autosomal recessive form of spastic paraparesis (motor neuron disease) with juvenile onset and slow progression caused by loss of function of alsin, an activator of Rac1 and Rab5 small GTPases. To establish an animal model of ALS2 and derive insights into the pathogenesis of this illness, we have generated alsin-null mice. Cytosol from brains of Als2(-/-) mice shows marked diminution of Rab5-dependent endosome fusion activity. Furthermore, primary neurons from Als2(-/-) mice show a disturbance in endosomal transport of insulin-like growth factor 1 (IGF1) and BDNF receptors, whereas neuronal viability and endocytosis of transferrin and dextran seem unaltered. There is a significant decrease in the size of cortical motor neurons, and Als2(-/-) mice are mildly hypoactive. Altered trophic receptor trafficking in neurons of Als2(-/-) mice may underlie the histopathological and behavioral changes observed and the pathogenesis of ALS2.

Download full-text

Full-text

Available from: Paul C Orban, Aug 21, 2014
0 Followers
 · 
98 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Small GTPases participate in a broad range of cellular processes such as proliferation, differentiation, and migration. The exchange of GDP for GTP resulting in the activation of these GTPases is catalyzed by a group of enzymes called guanine nucleotide exchange factors (GEFs), of which two classes: Dbl-related exchange factors and the more recently described dedicator of cytokinesis proteins family exchange factors. Increasingly, deregulation of normal GEF activity or function has been associated with a broad range of disease states, including neurodegeneration and neurodevelopmental disorders. In this review, we examine this evidence with special emphasis on the novel role of Rho guanine nucleotide exchange factor (RGNEF/p190RhoGEF) in the pathogenesis of amyotrophic lateral sclerosis. RGNEF is the first neurodegeneration-linked GEF that regulates not only RhoA GTPase activation but also functions as an RNA binding protein that directly acts with low molecular weight neurofilament mRNA 3' untranslated region to regulate its stability. This dual role for RGNEF, coupled with the increasing understanding of the key role for GEFs in modulating the GTPase function in cell survival suggests a prominent role for GEFs in mediating a critical balance between cytotoxicity and neuroprotection which, when disturbed, contributes to neuronal loss.
    Frontiers in Cellular Neuroscience 09/2014; 8. DOI:10.3389/fncel.2014.00282 · 4.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This review article is focused on the research progress made utilizing the wobbler mouse as animal model for human motor neuron diseases, especially the amyotrophic lateral sclerosis (ALS). The wobbler mouse develops progressive degeneration of upper and lower motor neurons and shows striking similarities to ALS. The cellular effects of the wobbler mutation, cellular transport defects, neurofilament aggregation, neuronal hyperexcitability and neuroinflammation closely resemble human ALS. Now, 57 years after the first report on the wobbler mouse we summarize the progress made in understanding the disease mechanism and testing various therapeutic approaches and discuss the relevance of these advances for human ALS. The identification of the causative mutation linking the wobbler mutation to a vesicle transport factor and the research focussed on the cellular basis and the therapeutic treatment of the wobbler motor neuron degeneration has shed new light on the molecular pathology of the disease and might contribute to the understanding the complexity of ALS.
    MGG Molecular & General Genetics 03/2013; DOI:10.1007/s00438-013-0741-0 · 2.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Loss-of-function mutations in human ALS2 account for several juvenile recessive motor neuron diseases (MNDs). To understand the molecular basis underlying motor dysfunction in ALS2-linked MNDs, several lines of Als2(-/-) mice with a mixed genetic background were thus far generated, and their phenotypes were thoroughly characterized. However, several phenotypic discrepancies among different Als2-deficient lines became evident. To investigate whether genetic backgrounds are associated with such discrepancies, we here generated congenic lines of Als2(-/-) mice on two different genetic backgrounds; C57BL/6 (B6) and FVB/N (FVB), and investigated their gross phenotypes. Both B6 and FVB congenic lines were viable and fertile with no evidences for obvious abnormalities. There were no differences in growth curves between wild-type and Als2(-/-) mice on each genetic background. Remarkably, Als2(-/-) mice on a FVB, but not a B6, background exhibited a shorter life span than wild-type litters. Further, B6 female, but not male, Als2(-/-) mice showed a significantly lower spontaneous rearing activity than wild-type litters. These genetic background- and/or gender-specific findings suggest the presence of modifiers for life span and motor activities in Als2(-/-) mice. These congenic mice should provide a useful means to understand the molecular and genetic basis for variable expression of pathological phenotypes in MNDs.
    Neuroscience Research 10/2010; 68(2):131-6. DOI:10.1016/j.neures.2010.06.004 · 2.15 Impact Factor