Article

Als2-deficient mice exhibit disturbances in endosome trafficking associated with motor behavioral abnormalities.

Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, 980 West 28th Avenue, Vancouver, BC, Canada V5Z 4H4.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 07/2006; 103(25):9595-600. DOI: 10.1073/pnas.0510197103
Source: PubMed

ABSTRACT ALS2 is an autosomal recessive form of spastic paraparesis (motor neuron disease) with juvenile onset and slow progression caused by loss of function of alsin, an activator of Rac1 and Rab5 small GTPases. To establish an animal model of ALS2 and derive insights into the pathogenesis of this illness, we have generated alsin-null mice. Cytosol from brains of Als2(-/-) mice shows marked diminution of Rab5-dependent endosome fusion activity. Furthermore, primary neurons from Als2(-/-) mice show a disturbance in endosomal transport of insulin-like growth factor 1 (IGF1) and BDNF receptors, whereas neuronal viability and endocytosis of transferrin and dextran seem unaltered. There is a significant decrease in the size of cortical motor neurons, and Als2(-/-) mice are mildly hypoactive. Altered trophic receptor trafficking in neurons of Als2(-/-) mice may underlie the histopathological and behavioral changes observed and the pathogenesis of ALS2.

0 Followers
 · 
95 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Amyotrophic lateral sclerosis (ALS) and Huntington’s disease (HD) are debilitating neurodegenerative conditions for which there is no effective cure. Genetic determinants of both diseases have been identified, providing insight into neuropathological mechanisms and opportunities for therapeutic intervention. Aggregation of mutant proteins is the most prominent phenotype of these neurodegenerative diseases as is the case in Alzheimer’s disease and Parkinson’s disease. Here we review transgenic animal models of ALS and HD in mouse, zebrafish, C. elegans, and Drosophila that have been developed to study different aspects of disease progression. We also cover some large mammal transgenic models that have been recently developed. To effectively tackle these conditions will likely require effective use of several of these animal models, as each offers distinct advantages and insights into disease pathology.
    Genes & genomics 08/2014; 36(4):399-413. DOI:10.1007/s13258-014-0188-7 · 0.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neurotrophins are a family of proteins that are important for neuronal development, neuronal survival and neuronal functions. Neurotrophins exert their role by binding to their receptors, the Trk family of receptor tyrosine kinases (TrkA, TrkB, and TrkC) and p75NTR, a member of the tumor necrosis factor (TNF) receptor superfamily. Binding of neurotrophins to receptors triggers a complex series of signal transduction events, which are able to induce neuronal differentiation but are also responsible for neuronal maintenance and neuronal functions. Rab proteins are small GTPases localized to the cytosolic surface of specific intracellular compartments and are involved in controlling vesicular transport. Rab proteins, acting as master regulators of the membrane trafficking network, play a central role in both trafficking and signaling pathways of neurotrophin receptors. Axonal transport represents the Achilles' heel of neurons, due to the long-range distance that molecules, organelles and, in particular, neurotrophin-receptor complexes have to cover. Indeed, alterations of axonal transport and, specifically, of axonal trafficking of neurotrophin receptors are responsible for several human neurodegenerative diseases, such as Huntington's disease, Alzheimer's disease, amyotrophic lateral sclerosis and some forms of Charcot-Marie-Tooth disease. In this review, we will discuss the link between Rab proteins and neurotrophin receptor trafficking and their influence on downstream signaling pathways.
    12/2014; 4(4):642-677. DOI:10.3390/membranes4040642
  • [Show abstract] [Hide abstract]
    ABSTRACT: Early endosomes are essential for regulating cell signalling and controlling the amount of cell surface molecules during neuronal morphogenesis. Early endosomes undergo retrograde transport (clustering) before their homotypic fusion. Small GTPase Rab5 is known to promote early endosomal fusion, but the mechanism linking the transport/clustering with Rab5 activity is unclear. Here we show that Drosophila Strip is a key regulator for neuronal morphogenesis. Strip knockdown disturbs the early endosome clustering, and Rab5-positive early endosomes become smaller and scattered. Strip genetically and biochemically interacts with both Glued (the regulator of dynein-dependent transport) and Sprint (the guanine nucleotide exchange factor for Rab5), suggesting that Strip is a molecular linker between retrograde transport and Rab5 activation. Overexpression of an active form of Rab5 in strip-mutant neurons suppresses the axon elongation defects. Thus, Strip acts as a molecular platform for the early endosome organization that has important roles in neuronal morphogenesis.
    Nature Communications 10/2014; 5:5180. DOI:10.1038/ncomms6180 · 10.74 Impact Factor

Full-text (2 Sources)

Download
7 Downloads
Available from
Aug 21, 2014