Mesodermal cell types induce neurogenesis from adult human hippocampal progenitor cells

Department of Neurology, Technical University of Dresden, Dresden, Germany.
Journal of Neurochemistry (Impact Factor: 4.28). 08/2006; 98(2):629-40. DOI: 10.1111/j.1471-4159.2006.03916.x
Source: PubMed


Neurogenesis in the adult human brain occurs within two principle neurogenic regions, the hippocampus and the subventricular zone (SVZ) of the lateral ventricles. Recent reports demonstrated the isolation of human neuroprogenitor cells (NPCs) from these regions, but due to limited tissue availability the knowledge of their phenotype and differentiation behavior is restricted. Here we characterize the phenotype and differentiation capacity of human adult hippocampal NPCs (hNPCs), derived from patients who underwent epilepsy surgery, on various feeder cells including fetal mixed cortical cultures, mouse embryonic fibroblasts (MEFs) and PA6 stromal cells. Isolated hNPCs were cultured in clonal density by transferring the cells to serum-free media supplemented with FGF-2 and EGF in 3% atmospheric oxygen. These hNPCs showed neurosphere formation, expressed high levels of early neuroectodermal markers, such as the proneural genes NeuroD1 and Olig2, the NSC markers Nestin and Musashi1, the proliferation marker Ki67 and significant activity of telomerase. The phenotype was CD15low/-, CD34-, CD45- and CD133-. After removal of mitogens and plating them on poly D-lysine, they spontaneously differentiated into a neuronal (MAP2ab+), astroglial (GFAP+), and oligodendroglial (GalC+) phenotype. Differentiated hNPCs showed functional properties of neurons, such as sodium channels, action potentials and production of the neurotransmitters glutamate and GABA. Co-culture of hNPCs with fetal cortical cultures, MEFs and PA6 cells increased neurogenesis of hNPCs in vitro, while only MEFs and PA6 cells also led to a morphological and functional neurogenic maturation. Together we provide a first detailed characterization of the phenotype and differentiation potential of human adult hNPCs in vitro. Our findings reinforce the emerging view that the differentiation capacity of adult hNPCs is critically influenced by non-neuronal mesodermal feeder cells.

Download full-text


Available from: Stefan Liebau, Dec 11, 2014
18 Reads
  • Source
    • "Still, they inherit ethical and legal prohibitions and harbor certain dangers such as teratoma formation in vivo. (ii) Neural stem cells (adult stem cells) provide a source for even autologous dopaminergic neurons and can be used for patient-specific and disease-specific pathogenic investigations [11] [12] [13] [14] [15]. Nevertheless, these cells are extremely difficult to harvest, and this is only possible by harmful surgical intervention. "
    [Show abstract] [Hide abstract]
    ABSTRACT: α-synuclein is a protein involved in the pathogenesis of several so-called synucleinopathies including Parkinson's disease. A variety of models have been so far assessed. Human induced pluripotent stem cells provide a patient- and disease-specific model for in vitro studies, pharmacotoxicological screens, and hope for future cell-based therapies. Initial experimental procedures include the harvest of patients' material for the reprogramming process, the investigation of the patients genetic background in the cultured cells, and the evaluation of disease-relevant factors/proteins under various cell culture conditions.
    03/2012; 2012:629230. DOI:10.1155/2012/629230
  • Source
    • "Similar to our results, the human brain-derived adult neuroprogenitors cells (NPCs) showed high expression of the neural stem cell marker NES (nestin), as well as of OLIG2, MSl1, NKX2-2, and CD44. NES and MSI1 were already reported in adult NPCs by Hermann et al [47]. In addition, the expression of various SOX genes was detectable, such as SOX2 and SOX10. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Neural stem cells (NSC) with self-renewal and multipotent properties serve as an ideal cell source for transplantation to treat neurodegenerative insults such as Parkinson's disease. We used Agilent's and Illumina Whole Human Genome Oligonucleotide Microarray to compare the genomic profiles of human embryonic NSC at a single time point in culture, and a multicellular tissue from postmortem adult substantia nigra (SN) which are rich in dopaminergic (DA) neurons. We identified 13525 up-regulated genes in both cell types of which 3737 (27.6%) genes were up-regulated in the hENSC, 4116 (30.4%) genes were up-regulated in the human substantia nigra dopaminergic cells, and 5672 (41.93%) were significantly up-regulated in both cell population. Careful analysis of the data that emerged using DAVID has permitted us to distinguish several genes and pathways that are involved in dopaminergic (DA) differentiation, and to identify the crucial signaling pathways that direct the process of differentiation. The set of genes expressed more highly at hENSC is enriched in molecules known or predicted to be involved in the M phase of the mitotic cell cycle. On the other hand, the genes enriched in SN cells include a different set of functional categories, namely synaptic transmission, central nervous system development, structural constituents of the myelin sheath, the internode region of axons, myelination, cell projection, cell somata, ion transport, and the voltage-gated ion channel complex. Our results were also compared with data from various databases, and between different types of arrays, Agilent versus Illumina. This approach has allowed us to confirm the consistency of our obtained results for a large number of genes that delineate the phenotypical differences of embryonic NSCs, and SN cells.
    PLoS ONE 12/2011; 6(12):e28420. DOI:10.1371/journal.pone.0028420 · 3.23 Impact Factor
  • Source
    • "Additionally, neuropathological tissue examination did not reveal evidence for tumour formation. For expansion of neurospheres, tissue samples were dissociated using trypsin, DNase and mechanical trituration similar as described previously [19]. Several media and supplements were tested like DMEM, DMEM/F12, Neurobasal (all from Gibco), P4-8F (Athena) with and without N2 or B27 supplements (Gibco) and growth factors. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Neural stem cells (NSCs) are a promising source for cell replacement therapies for neurological diseases. Growing evidence suggests an important role of cerebrospinal fluid (CSF) not only on neuroectodermal cells during brain development but also on the survival, proliferation and fate specification of NSCs in the adult brain. Existing in vitro studies focused on embryonic cell lines and embryonic CSF. We therefore studied the effects of adult human leptomeningeal CSF on the behaviour of adult human NSCs (ahNSCs). Adult CSF increased the survival rate of adult human NSCs compared to standard serum free culture media during both stem cell maintenance and differentiation. The presence of CSF promoted differentiation of NSCs leading to a faster loss of their self-renewal capacity as it is measured by the proliferation markers Ki67 and BrdU and stronger cell extension outgrowth with longer and more cell extensions per cell. After differentiation in CSF, we found a larger number of GFAP+ astroglial cells compared to differentiation in standard culture media and a lower number of beta-tubulin III+ neuronal cells. Our data demonstrate that adult human leptomeningeal CSF creates a beneficial environment for the survival and differentiation of adult human NSCs. Adult CSF is in vitro a strong glial differentiation stimulus and leads to a rapid loss of stem cell potential.
    BMC Neuroscience 04/2010; 11(48):48. DOI:10.1186/1471-2202-11-48 · 2.67 Impact Factor
Show more

Similar Publications