Endogenous ethanol production in a patient with chronic intestinal pseudo-obstruction and small intestinal bacterial overgrowth.

Centre for Chronic Intestinal Failure, Department of Internal Medicine and Gastroenterology, University of Bologna, Bologna, Italy.
European Journal of Gastroenterology & Hepatology (Impact Factor: 2.15). 08/2006; 18(7):799-802. DOI: 10.1097/01.meg.0000223906.55245.61
Source: PubMed

ABSTRACT The case of the gastrointestinal production of ethanol from Candida albicans and Saccharomyces cerevisiae in a Caucasian man with chronic intestinal pseudo-obstruction is reported. The patient, who declared to have always abstained from alcohol, was hospitalized for abdominal pain, belching and mental confusion. The laboratory findings showed the presence of ethanol in the blood. Gastric juice and faecal microbiological cultures were positive for C. albicans and S. cerevisiae. At home, he was on oral antibiotic therapy with amoxicillin plus clavulanic acid for a small bowel bacterial overgrowth, associated with a simple sugar-rich diet. Twenty-four hours after stopping both the antibiotic therapy and the simple sugar-rich diet, the blood ethanol disappeared. A provocative test, performed by giving amoxicillin plus clavulanic acid associated with the simple sugar-rich diet was followed by the reappearance of ethanol in the blood. A review of the literature is reported.


Available from: Mariacristina Guidetti, Jul 21, 2014
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Alcohol-based hand rubs (ABHRs) have been associated with a reduction of nosocomial infections. Despite the worldwide introduction of these products in health care settings, the aim of this study was to assess the transpulmonary absorption of ethanol contains in ABHRs used by health care workers (HCWs) in real conditions of work shift. METHODS: Twenty-six HCWs of Nancy University Hospital were included. Research consisted in monitoring participants during 4 hours of work shift to assess their exposure to ethanol. The measurement of ethanol vapors in exhaled breath was performed using a class B ethylometer (Alco-Sensor FST). Ethanol concentration in inhaled breath was measured using Gilian pump LFS-113. Concentration of ethanol, acetaldehyde, and acetate in blood and urine samples were determined using gas chromatography with flame ionization detector. RESULTS: Participants were 12% male and 88% female. The mean age was 40 ± 8 years. None of the employees included in the study presented any traces of ethanol or its metabolites in the blood or urine. Ethanol (0.08 ± 0.07 mg/L) was detected in the breath of 10 HCWs at 1 to 2 minutes postexposure. The mean concentration of ethanol in the inhaled air was 46.2 mg/m(3). CONCLUSION: Absorption of ethanol vapor from ABHRs among HCWs during their care activities was not detected. Quantification of ethanol fumes inhaled during 4 hours of work shift was below the regulatory limitations of exposure to ethanol.
    American journal of infection control 01/2013; 41(3). DOI:10.1016/j.ajic.2012.09.004 · 2.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Determination of pharmacokinetics (PKs) of multicomponent pharmaceuticals and/or nutraceuticals (polypharmacokinetics, poly-PKs) is difficult due to the vast number of compounds present in natural products, their various concentrations across a wide range, complexity of their interactions, as well as their complex degradation dynamics in vivo. Metabolomics coupled with multivariate statistical tools that focus on the comprehensive analysis of small molecules in biofluids is a viable approach to address the challenges of poly-PK. This paper discusses recent advances in the characterization of poly-PK and the metabolism of multicomponent xenobiotic agents, such as compound drugs, dietary supplements, and herbal medicines, using metabolomics strategy. We propose a research framework that integrates the dynamic concentration profile of bioavailable xenobiotic molecules that result from in vivo absorption and hepatic and gut bacterial metabolism, as well as the human metabolic response profile. This framework will address the bottleneck problem in the pharmacological evaluation of multicomponent pharmaceuticals and nutraceuticals, leading to the direct elucidation of the pharmacological and molecular mechanisms of these compounds.
    Evidence-based Complementary and Alternative Medicine 03/2013; 2013:819147. DOI:10.1155/2013/819147 · 2.18 Impact Factor