Article

A distinct Toll-like receptor repertoire in human tonsillar B cells, directly activated by PamCSK, R-837 and CpG-2006 stimulation.

Laboratory of Clinical and Experimental Allergy Research, Department of Otorhinolaryngology, Malmö University Hospital, Lund University, Sweden.
Immunology (Impact Factor: 3.71). 09/2006; 118(4):539-48. DOI: 10.1111/j.1365-2567.2006.02392.x
Source: PubMed

ABSTRACT Toll-like receptors (TLRs) recognize specific pathogen-associated molecular patterns (PAMPs), which subsequently trigger innate immunity. Recent data also suggest a role for TLRs in the direct activation of adaptive immune cells. In the present study, the expression and function of TLR1-TLR10 were characterized in purified human tonsillar B cells, focusing on differences among CD19+ CD38- CD27- (naïve B cells), CD19+ IgD- CD27-[germinal centre (GC) B cells] and CD19+ CD38- CD27+ (memory B cells) cells. The study was also designed to compare the TLR expression in B cells obtained from infected and hyperplastic tonsils that served as controls. The results demonstrated a distinct repertoire of TLRs, in which TLR1, TLR2, TLR7, TLR9 and TLR10 predominated. No differences were found among naïve, GC and memory B cells. Tonsillar infection did not substantially alter the TLR expression profile in ex vivo-isolated B-cell subsets. Purified CD19+ B cells stimulated with Pam3CSK4, R-837 and CpG oligodeoxynucleotide (ODN) 2006, via TLR1/TLR2, TLR7 and TLR9, respectively, showed an induction of interleukin-6 secretion and an up-regulated expression of human leucocyte antigen (HLA)-DR. Collectively, the present study demonstrates that B cells exhibit constitutively high levels of specific TLRs, which are not developmentally regulated during the B-cell differentiation process. Ongoing microbial infections, such as chronic tonsillitis, do not appear to affect the TLR profile in B cells. Furthermore, the distinct expression of TLRs allows B cells to respond directly to the cognate PAMPs. This further emphasizes the role of TLRs in directly activating adaptive immune cells.

0 Bookmarks
 · 
42 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The gut mucosal barrier disrupted in HIV disease, resulting in increased systemic exposure to microbial products such as Lipo Polys Accharide (LPS). The association of enhanced microbial translocation and B cell dysfunction in HIV disease is not fully understood. High dose and short term exposure of microbial Toll-Like Receptor (TLR) agonists were used as vaccine adjuvants, however, low dose and long term exposure of TLR agonists could be harmful. The characteristics of B cell dysfunction in HIV disease included B cell, especially memory B cell depletion, enhanced levels of autoimmune antibodies and impaired vaccine or antigen responsiveness. This review discusses and explores the possibility of the effect of microbial translocation on memory B cell depletion and impaired vaccine responses in HIV infection. By determining the mechanisms of B cell depletion and perturbations in HIV disease, it may be possible to design interventions that can improve immune responses to vaccines, reduce selected opportunistic infections and perhaps slow disease progression.
    American journal of immunology 01/2012; 8(2):44-51.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Palatine tonsils are continuously exposed to microorganisms and antigens and secrete antimicrobial peptides as a first line of defense. S100A7 is a protein with antimicrobial and chemotactic properties. Our aim was to investigate how the expression of S100A7 in human palatine tonsils is affected by inflammatory processes. Tonsils obtained from 109 patients undergoing tonsillectomy were divided into groups of infected and noninfected as well as allergic and nonallergic, based on the results from tonsillar core culture tests and Phadiatop analysis, respectively. Western blot and immunohistochemistry were used to assess protein expression and real-time PCR was used to quantify mRNA levels. To explore the induction of S100A7, tonsils were stimulated with lipopolysaccharide in vitro. The immunohistochemical staining for S100A7 was most intense in the tonsillar epithelium, but the protein was also detected in B- and T-cell regions, which was confirmed with Western blot on isolated B and T cells. The S100A7 expression appeared to be the highest in CD8+ T cells. Reduced mRNA levels of S100A7 were detected in infected tonsils as well as in tonsils from allergic individuals. In vitro stimulation of tonsils with lipopolysaccharide did not have any effect on the expression. The results suggest a role for S100A7 in recurrent tonsillitis and allergic disease.
    FEMS Immunology & Medical Microbiology 07/2008; 53(3):413-20. · 2.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although T cells are the primary and most-studied targets of the Human Immunodeficiency Virus (HIV), B cells, especially memory B lymphocytes, are also chronically depleted in the course of HIV disease. Although the lack of CD4(+) T cell help may explain these deficiencies, intrinsic defects in B lymphocytes appear to contribute to B cell depletion and reduced antibody (Ab) production in the setting of HIV, especially of some antigens eliciting T cell-independent responses. The gut mucosal barrier is disrupted in HIV disease, resulting in increased systemic exposure to microbial products such as Toll-Like Receptor (TLR) agonists. The association of enhanced systemic levels of TLR agonists and B cell dysfunction in HIV disease is not understood. This review discusses the potential role of microbial TLR agonists in the B cell depletion, enhanced autoantibody production and impaired responses to vaccination observed in HIV-infected hosts. Increased microbial translocation in HIV infection may drive B cells to produce autoantibodies and increase susceptibilities of B cells to apoptosis through activation-induced cell death. Determining the mechanisms of B cell perturbations in HIV disease will inform the design of novel strategies of improve immune responses to vaccines, reduce opportunistic infections and slow disease progression.
    Epidemiology (Sunnyvale, Calif.). 02/2013; 3:120.

Full-text

View
0 Downloads
Available from