The interferon-inducible RNA helicase, mda-5, is involved in measles virus-induced expression of antiviral cytokines

Department of Virology, University of Turku, Kiinamyllynkatu 13, FIN-20520 Turku, Finland.
Microbes and Infection (Impact Factor: 2.86). 08/2006; 8(8):2138-44. DOI: 10.1016/j.micinf.2006.04.005
Source: PubMed


Activation of host cell antiviral responses is mediated by receptors detecting the presence of viruses. Here we have studied the role of double-stranded RNA (dsRNA) binding molecules melanoma differentiation-associated gene 5 (mda-5), retinoic acid inducible gene I (RIG-I), and Toll-like receptor 3 (TLR3) in measles virus (MV)-induced expression of antiviral cytokines and chemokines in human A549 lung epithelial cells and human umbilical vein endothelial cells (HUVECs). We show that MV infection results in the activation of mda-5, RIG-I, and TLR3 gene expression that is followed by high expression of interferon (IFN)-beta, interleukin (IL)-28 and IL-29, CCL5, and CXCL10 genes. We also demonstrate that IFN-alpha and IFN-beta upregulate mda-5, RIG-I, and TLR3 gene expression in epithelial and endothelial cell lines. Forced expression of mda-5, but not that of RIG-I or TLR3, leads to enhanced IFN-beta promoter activity in MV-infected A549 cells. Our results suggest that IFN-inducible mda-5 is involved in MV-induced expression of antiviral cytokines.

11 Reads
  • Source
    • "Overexpression of the CARD of Muscovy duck MDA5 also increased the expressions of RIG-I and LGP2 transcripts (Figure 5). It was reported that IFN-α and IFN-β treatment of a human lung adenocarcinoma epithelial cell line and human umbilical vein endothelial cells resulted in activation of MDA5, RIG-I, and TLR3 mRNA expression [35]. Previous research also showed that the MDA5 and RIG-I genes are upregulated by IFN-α [33,36,37]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Melanoma differentiation-associated gene 5 (MDA5) is an important intracellular receptor that recognizes long molecules of viral double-stranded RNA in innate immunity. To understand the mechanism of duck MDA5-mediated innate immunity, we cloned the MDA5 cDNA from the Muscovy duck (Cairina moschata). Quantitative real-time PCR analysis indicates that duck MDA5 mRNA was constitutively expressed in all sampled tissues. A significant increase of MDA5 mRNA was detected in the brain, spleen and lungs of ducks after infection with an H5N1 highly pathogenic avian influenza virus (HPAIV). We investigated the role of the predicted functional domains of MDA5. The results indicate the caspase activation and recruitment domain (CARD) of duck MDA5 had a signal transmission function through IRF-7-dependent signaling pathway. Overexpression of the CARD strongly activated the chicken IFN-beta promoter and upregulated the mRNA expression of antiviral molecules (such as OAS, PKR and Mx), proinflammatory cytokines (such as IL-2, IL-6, IFN-alpha and IFN-gamma, but not IL-1beta and IL-8) and retinoic acid-inducible gene I (RIG-I)-like receptors (RLR) (RIG-I and LGP2) without exogenous stimulation. We also demonstrate the NS1 of the H5N1 HPAIV inhibited the duck MDA5-mediated signaling pathway in vitro. These results suggest that duck MDA5 is an important receptor for inducing antiviral activity in the host immune response of ducks.
    Veterinary Research 06/2014; 45(1):66. DOI:10.1186/1297-9716-45-66 · 2.82 Impact Factor
  • Source
    • "The up-regulation of IFN-λ gene expression has also been described for other viral infections [1], [2], [8], [15], [53]. In contrast, the study of Mihm et al. shows that IFN-λ expression in the liver is similar in non-viral liver disease and HCV infection [54]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Specific differences in signaling and antiviral properties between the different Lambda-interferons, a novel group of interferons composed of IL-28A, IL-28B and IL-29, are currently unknown. This is the first study comparatively investigating the transcriptome and the antiviral properties of the Lambda-interferons IL-28A and IL-29. Expression studies were performed by microarray analysis, quantitative PCR (qPCR), reporter gene assays and immunoluminometric assays. Signaling was analyzed by Western blot. HCV replication was measured in Huh-7 cells expressing subgenomic HCV replicon. All hepatic cell lines investigated as well as primary hepatocytes expressed both IFN-λ receptor subunits IL-10R2 and IFN-λR1. Both, IL-28A and IL-29 activated STAT1 signaling. As revealed by microarray analysis, similar genes were induced by both cytokines in Huh-7 cells (IL-28A: 117 genes; IL-29: 111 genes), many of them playing a role in antiviral immunity. However, only IL-28A was able to significantly down-regulate gene expression (n = 272 down-regulated genes). Both cytokines significantly decreased HCV replication in Huh-7 cells. In comparison to liver biopsies of patients with non-viral liver disease, liver biopsies of patients with HCV showed significantly increased mRNA expression of IL-28A and IL-29. Moreover, IL-28A serum protein levels were elevated in HCV patients. In a murine model of viral hepatitis, IL-28 expression was significantly increased. IL-28A and IL-29 are up-regulated in HCV patients and are similarly effective in inducing antiviral genes and inhibiting HCV replication. In contrast to IL-29, IL-28A is a potent gene repressor. Both IFN-λs may have therapeutic potential in the treatment of chronic HCV.
    PLoS ONE 12/2010; 5(12):e15200. DOI:10.1371/journal.pone.0015200 · 3.23 Impact Factor
  • Source
    • "rHPIV2-V ko -infected cells produced IFN-β efficiently whereas rHPIV2-WT did not, clearly indicating that rHPIV2 V protein inhibits the induction of IFN. All of the paramyxovirus V proteins examined to date have been shown to down-regulate IFN-β induction using a mechanism linked to interaction of the C-terminus of V protein with the helicase domain of MDA5 to block its activation and signaling to IRF3 (Andrejeva et al., 2004; Berghall et al., 2006; Childs et al., 2007, 2009). Although several studies have indicated that RIG-I is the primary helicase for sensing paramyxoviruses rather than MDA5 (Kato et al., 2005, 2006; Loo et al., 2008), the conservation of the V– MDA5 interaction across the four above-mentioned paramyxovirus genera signifies that its role is likely important. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In wild-type human parainfluenza virus type 2 (WT HPIV2), one gene (the P/V gene) encodes both the polymerase-associated phosphoprotein (P) and the accessory V protein. We generated a HPIV2 virus (rHPIV2-Vko) in which the P/V gene encodes only the P protein to examine the role of V in replication in vivo and as a potential live attenuated virus vaccine. Preventing expression of V protein severely impaired virus recovery from cDNA and growth in vitro, particularly in IFN-competent cells. rHPIV2-Vko, unlike WT HPIV2, strongly induced IFN-β and permitted IFN signaling, leading to establishment of a robust antiviral state. rHPIV2-Vko infection induced extensive syncytia and cytopathicity that was due to both apoptosis and necrosis. Replication of rHPIV2-Vko was highly restricted in the respiratory tract of African green monkeys and in differentiated primary human airway epithelial (HAE) cultures, suggesting that V protein is essential for efficient replication of HPIV2 in organized epithelial cells and that rHPIV2-Vko is over-attenuated for use as a live attenuated vaccine.
    Virology 02/2010; 397(2-397):285-298. DOI:10.1016/j.virol.2009.11.018 · 3.32 Impact Factor
Show more