Does physiological beta cell turnover initiate autoimmune diabetes in the regional lymph nodes?

Frankel Laboratory, Center for Stem Cell Research, Schneider Children's Medical Center of Israel, Israel.
Autoimmunity Reviews (Impact Factor: 7.98). 06/2006; 5(5):338-43. DOI: 10.1016/j.autrev.2006.02.005
Source: PubMed

ABSTRACT The initial immune process that triggers autoimmune beta cell destruction in type 1 diabetes is not fully understood. In early infancy there is an increased beta cell turnover. Recurrent exposure of tissue-specific antigens could lead to primary sensitization of immune cells in the draining lymph nodes of the pancreas. An initial immune injury to the beta cells can be inflicted by several cell types, primarily macrophages and T cells. Subsequently, infiltrating macrophages transfer antigens exposed by apoptotic beta cells to the draining lymph nodes, where antigen presenting cells process and amplify a secondary immune reaction. Antigen presenting cells evolve as dual players in the activation and suppression of the autoimmune reaction in the draining lymph nodes. We propose a scenario where destructive insulitis is caused by recurrent exposure of specific antigens due to the physiological turnover of beta cells. This sensitization initiates the evolution of reactive clones that remain silent in the regional lymph nodes, where they succeed to evade regulatory clonal deletion.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The relative efficiencies of allogeneic and syngeneic bone marrow transplantation and the threshold levels of donor chimerism required to control autoimmune insulitis were evaluated in prediabetic NOD mice. Male and female NOD mice were conditioned by radiation and grafted with bone marrow cells from allogeneic and syngeneic sex-mismatched donors. Establishment of full allogeneic chimerism in peripheral blood reversed insulitis and restored glucose tolerance despite persistence of residual host immune cells. By contrast, sublethal total body irradiation (with or without syngeneic transplant) reduced the incidence and delayed the onset of diabetes. The latter pattern was also seen in mice that rejected the bone marrow allografts. Low levels of stable allogeneic hematopoietic chimerism (>1%) were sufficient to prevent the evolution of diabetes following allogeneic transplantation. The data indicate that immunomodulation attained at low levels of allogeneic, but not syngeneic, hematopoietic chimerism is effective in resolution of islet inflammation at even relatively late stages in the evolution of the prediabetic state in a preclinical model. However, our data question the efficacy and rationale behind syngeneic (autologous-like) immuno-hematopoietic reconstitution in type 1 diabetes.
    Journal of Autoimmunity 07/2009; 33(2):83-91. · 8.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The engineering considerations and engineering baseline for the divertor, limiter, and vacuum-vessel assembly are discussed, focusing on the constraints imposed by the relatively small size of the CIT. Arrangements for remote maintenance are described. The organization formed to execute the CIT project and the integration of industrial forms into this laboratory effort are examined
    Fusion Engineering, 1989. Proceedings., IEEE Thirteenth Symposium on; 11/1989
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We hypothesized that regulatory T cells (Treg) effectively target diabetogenic cells, and reinforcing their killing capacity will attenuate the course of disease. For proof of concept, Fas-ligand (FasL) protein was conjugated to CD25(+) Treg (killer Treg) to simulate the physiological mechanism of activation-induced cell death. Cytotoxic and suppressive activity of killer Treg was superior to naïve Treg in vitro. Administration of 3-4 × 10(6) Treg prevented hyperglycemia in 65% prediabetic NOD females, however only killer Treg postponed disease onset by 14 weeks. CD25(+) Treg homed to the pancreas and regional lymph nodes of prediabetic NOD females, proliferated and ectopic FasL protein induced apoptosis in CD25(-) T cells in situ. This mechanism of pathogenic cell debulking is specific to killer Treg, as FasL-coated splenocytes have no immunomodulatory effect, and only killer Treg prevent the disease in 80% of NOD.SCID recipients of effector:suppressor T cells (10:1 ratio). All immunomodulated mice displayed increased fractional expression of FoxP3 in the pancreas and draining lymph nodes, which was accompanied by CD25 only in recipients of killer Treg. A therapeutic intervention that uses the affinity of Treg to reduce the pathogenic load has long-term consequences: arrest of destructive insulitis in mice with established disease prior to β-cell extinction.
    Journal of Autoimmunity 08/2011; 37(1):39-47. · 8.15 Impact Factor


Available from
May 20, 2014