The neuronal noradrenaline transporter, anxiety and cardiovascular disease.

Baker Heart Research Institute, Melbourne, Australia.
Journal of Psychopharmacology (Impact Factor: 3.37). 08/2006; 20(4 Suppl):60-6. DOI: 10.1177/1359786806066055
Source: PubMed

ABSTRACT Panic disorder can serve as a clinical model for testing whether mental stress can cause heart disease. Potential neural mechanisms of cardiac risk are the sympathetic activation during panic attacks, continuing release of adrenaline as a co-transmitter in the cardiac sympathetic nerves, and impairment of noradrenaline neuronal reuptake, augmenting sympathetic neural respnses. The phenotype of impaired neuronal reuptake of noradrenaline: an epigenetic mechanism? We suspect that this phenotype, in sensitizing people to heart symptom development, is a cause of panic disorder, and by magnifying the sympathetic neural signal in the heart, underlies increased cardiac risk. No loss of function mutations of the coding region of the norepinephrine transporter (NET) are evident, but we do detect hypermethylation of CpG islands in the NET gene promoter region. Chromatin immunoprecipitation methodology demonstrates binding of the inhibitory transcription factor, MeCP2, to promoter region DNA in panic disorder patients. Cardiovascular illnesses co-morbid with panic disorder. Panic disorder commonly coexists with essential hypertension and the postural tachycardia syndrome. In both of these cardiovascular disorders the impaired neuronal noradrenaline reuptake phenotype is also present and, as with panic disorder, is associated with NET gene promoter region DNA hypermethylation. An epigenetic 'co-morbidity' perhaps underlies the clinical concordance. Brain neurotransmitters. Using internal jugular venous sampling, in the absence of a panic attack we find normal norepinephrine turnover, but based on measurements of the overflow of the serotonin metabolite, 5HIAA, a marked increase (six to sevenfold) in brain serotonin turnover in patients with panic disorder. This appears to represent the underlying neurotransmitter substrate for the disorder. Whether this brain serotonergic activation is a prime mover, or consequential on other primary causes of panic disorder, including cardiac sensitization by faulty neuronal noradrenaline reuptake leading to cardiac symptoms and the enhanced vigilance which accompanies them, is unclear at present.

  • Pharmacogenomics 04/2014; 15(6):735-738. · 3.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Since the discovery of its fundamental involvement in Rett syndrome, methyl CpG binding protein 2 (MeCP2) has been the focus of an exhaustive biochemical and functional characterization. It is now becoming apparent that the intrinsic highly disordered nature of MeCP2, which is amenable to a plethora of post-translational modifications (PTMs), allows it to recognize a large number of protein interacting partners, including histones. MeCP2 is highly abundant in the brain and it is an important component of neuronal chromatin; nevertheless, the organization and implications of its involvement in terms of DNA methylation binding dependence and effects on transcription are still not well understood. Recent results have shown that MeCP2 plays an important role in brain development, aging, and in neurological disorders.
    Trends in Molecular Medicine 04/2014; · 9.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Orthostatic intolerance is the inability to tolerate the upright posture and is relieved by recumbence. It most commonly affects young women and has a major impact on quality of life and psychosocial well-being. Several forms of orthostatic intolerance have been described. The most common one is the recurrent vasovagal syncope (VVS) phenotype which presents as a transient and abrupt loss of consciousness and postural tone that is followed by rapid recovery. Another common type of orthostatic intolerance is the postural orthostatic tachycardia syndrome (POTS) which is characterized by an excessive rise in heart rate upon standing and is associated with symptoms of presyncope such as light-headedness, fatigue, palpitations, and nausea. Maintenance of arterial pressure under condition of reduced central blood volume during the orthostasis is accomplished in large part through sympathetic efferent nerve traffic to the peripheral vasculature. Therefore sympathetic nervous system (SNS) dysfunction is high on the list of possible contributors to the pathophysiology of orthostatic intolerance. Investigations into the role of the SNS in orthostatic intolerance have yielded mixed results. This review outlines the current knowledge of the function of the SNS in both VVS and POTS.
    Frontiers in physiology. 01/2014; 5:280.