Genetic diversity and geographic differentiation in Tacca chantrieri (Taccaceae): an autonomous selfing plant with showy floral display.

Laboratory for Plant Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650204, China.
Annals of Botany (Impact Factor: 3.3). 09/2006; 98(2):449-57. DOI: 10.1093/aob/mcl123
Source: PubMed

ABSTRACT Despite considerable investment in elaborate floral displays, Tacca chantrieri populations are predominantly selfing. It is hypothesized that this species might possess considerable spatial or temporal variation in outcrossing rates among populations. To test this hypothesis, genetic variability and genetic differentiation within and among T. chantrieri populations were investigated to find out if they are in agreement with expectations based on a predominantly inbred mating system.
Genetic diversity was quantified using inter-simple sequence repeats (ISSR) in 303 individuals from 13 populations taken from known locations of T. chantrieri in China, and from one population in Thailand.
Of the 113 primers screened, 24 produced highly reproducible ISSR bands. Using these primers, 160 discernible DNA fragments were generated, of which 145 (90.62 %) were polymorphic. This indicated considerable genetic variation at the species level. However, there were relatively low levels of polymorphism at population levels, with percentages of polymorphic bands (PPB) ranging from 8.75 % to 55 %. A high level of genetic differentiation among populations was detected based on different measures (Nei's genetic diversity analysis: G(ST) = 0.5835; AMOVA analysis: F(ST) = 0.6989). Furthermore, based on levels of genetic differentiation, the 14 populations clustered into two distinct groups separated by the Tanaka Line.
High levels of differentiation among populations and low levels of diversity within populations at large spatial scales are consistent with earlier small-scale studies of mating patterns detected by allozymes which showed that T. chantrieri populations are predominantly selfing. However, it appears that T. chantrieri has a mixed-mating system in which self-fertilization predominates, but there is occasional outcrossing. Significant genetic differences between the two distinct regions might be attributed to vicariance along the Tanaka Line. Finally, possible mechanisms of geographic patterns based on genetic differentiation of T. chantrieri are discussed.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The 'Tanaka-Kaiyong Line' (TKL) is a major phytogeographic boundary in Southwest China, separating East Asia's Sino-Himalayan and Sino-Japanese Floras. However, little is known about the importance of this boundary in promoting intraspecific phylogeographic subdivision and divergence. Using chloroplast (cpDNA) and nuclear-intron (nDNA) sequence data, we reconstructed the population history of Sophora davidii, a drought-tolerant riparian shrub widely distributed on either side of the TKL. Specifically, we aimed at testing two long-standing explanations for possible vicariant events across the TKL: (i) Late Pliocene (c. 3 Ma) geological uplift of the eastern Qinghai-Tibetan Plateau (QTP) or (ii) a sharp environmental gradient associated with the establishment of different monsoon regimes on either side of the TKL during the (Late) Pleistocene. Our genealogical analyses detected a major west-east split in cpDNA, geographically largely consistent with the TKL, and dated to c. 1.28 Ma (95% HPD: 0.21-2.96 Ma), hence postdating the latest phase of eastern QTP uplift. Furthermore, integrating cpDNA phylogeographic patterns with mismatch analyses, we found multiple refugial isolation and long-term demographic stability of populations in the west (Hengduan Mountain Range) compared with extensive range expansions in the east, possibly during the last glacial period(s) and followed by differentiation into regional sublineages (southeast: Yunnan-Guizhou Plateau vs. northeast: Qinling Mts./Loess Plateau). Although nuclear differentiation was less marked, the geographical pattern of nDNA haplotypes provided some further indication of the species' eastward expansion, possibly from source populations located just east of the TKL (lower Jinshajiang region). Overall, the present data reject the geological (tectonic) explanation for the TKL and, instead, provide supportive evidence for its role as a climatically driven barrier to present-day plant dispersal. In addition, our study highlights changing temperatures and vegetation types during the last glacial period(s), along with aspects of regional topography, to be important determinants of the glacial eastward expansion of S. davidii. In consequence, our study lends support to a 'glacial out-of-Hengduan Mts'. hypothesis for the xerophytic-riparian flora of Southwest China, which in turn is inconsistent with the traditional view of the TKL as a 'classical' vicariant-biogeographic boundary.
    Molecular Ecology 08/2013; 22(16):4270-88. · 5.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cucumber (Cucumis sativus L.) is one of the most important vegetable plants worldwide. Because of being a cross-pollinated plant, cucumber has very high level of genetic variation. In this study, thirty eight cucumber accessions were evaluated for their genetic diversity using agro-economic traits and microsatellite markers. Ten phenotypes: yield, fruit weight, fruit color white, flesh pith width, harvesting period, number of fruits per plant, fruit color green, fruit color, fruit length, and flesh pith length, were screened in field for nine seasons. The correlation analysis of phenotypic data revealed that yield significantly correlated with fruit weight, harvesting period, number of fruits per plant, fruit length, and flesh pith length. Additionally, 20 SSR markers identified 36 polymorphic alleles. The polymorphic information content (PIC) average at 0.33 and ranged from 0 to 0.62. From dendrogram and principal component analysis, the results showed three main clusters corresponded to cucumber country of origin. Interestingly, these clusters can also be grouped by several phenotypic traits including fruit weight, fruit color, fruit length, and flesh pith length. The data obtained from this study can be used to select the best parental lines for cucumber breeding program and for genetic improvement in cucumber.
    International Plant and Animal Genome Conference Asia 2013; 10/2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Flowering plants are characterized by striking variation in reproductive systems, and the evolutionary lability of their sexual traits is often considered a major driver of lineage diversification. But, evolutionary transitions in reproductive form and function are never entirely unconstrained and many changes exhibit strong directionality. Here, I consider why this occurs by examining transitions in pollination, mating and sexual systems, some of which have been considered irreversible. Among pollination systems, shifts from bee to hummingbird pollination are rarely reversible, whereas transitions from animal to wind pollination are occasionally reversed. Specialized pollination systems can become destabilized through a loss of pollinator service resulting in a return to generalized pollination, or more commonly a reliance on self-pollination. Homomorphic and heteromorphic self-incompatibility systems have multiple origins but breakdown to self-compatibility occurs much more frequently with little evidence for subsequent gains, at least over short time-spans. Similarly, numerous examples of the shift from outcrossing to predominant self-fertilization are known, but cases of reversal are very limited supporting the view that autogamy usually represents an evolutionary dead-end. The evolution of dioecy from hermaphroditism has also been considered irreversible, although recent evidence indicates that the occurrence of sex inconstancy and hybridization can lead to the origin of derived sexual systems from dioecy. The directionality of many transitions clearly refutes the notion of unconstrained reproductive flexibility, but novel adaptive solutions generally do not retrace earlier patterns of trait evolution.
    Proceedings of the Royal Society B: Biological Sciences 06/2013; 280(1765):20130913. · 5.29 Impact Factor

Full-text (2 Sources)

Available from
May 17, 2014