Inhibitory effects of nontoxic protein volvatoxin A1 on pore-forming cardiotoxic protein volvatoxin A2 by interaction with amphipathic alpha-helix.

Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.
FEBS Journal (Impact Factor: 4.25). 08/2006; 273(14):3160-71. DOI: 10.1111/j.1742-4658.2006.05325.x
Source: PubMed

ABSTRACT Volvatoxin A2, a pore-forming cardiotoxic protein, was isolated from the edible mushroom Volvariella volvacea. Previous studies have demonstrated that volvatoxin A consists of volvatoxin A2 and volvatoxin A1, and the hemolytic activity of volvatoxin A2 is completely abolished by volvatoxin A1 at a volvatoxin A2/volvatoxin A1 molar ratio of 2. In this study, we investigated the molecular mechanism by which volvatoxin A1 inhibits the cytotoxicity of volvatoxin A2. Volvatoxin A1 by itself was found to be nontoxic, and furthermore, it inhibited the hemolytic and cytotoxic activities of volvatoxin A2 at molar ratios of 2 or lower. Interestingly, volvatoxin A1 contains 393 amino acid residues that closely resemble a tandem repeat of volvatoxin A2. Volvatoxin A1 contains two pairs of amphipathic alpha-helices but it lacks a heparin-binding site. This suggests that volvatoxin A1 may interact with volvatoxin A2 but not with the cell membrane. By using confocal microscopy, it was demonstrated that volvatoxin A1 could not bind to the cell membrane; however, volvatoxin A1 could inhibit binding of volvatoxin A2 to the cell membrane at a molar ratio of 2. Via peptide competition assay and in conjunction with pull-down and co-pull-down experiments, we demonstrated that volvatoxin A1 and volvatoxin A2 may form a complex. Our results suggest that this occurs via the interaction of one molecule of volvatoxin A1, which contains two amphipathic alpha-helices, with two molecules of volvatoxin A2, each of which contains one amphipathic alpha-helix. Taken together, the results of this study reveal a novel mechanism by which volvatoxin A1 regulates the cytotoxicity of volvatoxin A2 via direct interaction, and potentially provide an exciting new strategy for chemotherapy.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Perfringolysin O (PFO), a cholesterol-dependent cytolysin, forms large oligomeric pore complexes comprised of up to 50 PFO molecules. In the present studies a mutant of PFO (PFO(Y181A)) has been identified that traps PFO in a multimeric prepore complex that cannot insert its transmembrane beta-hairpins and therefore cannot form a pore. Remarkably, PFO(Y181A) can be induced to insert its transmembrane beta-hairpins if functional PFO is incorporated into the PFO(Y181A) oligomeric prepore complex. Furthermore, the transition from prepore to pore appears to be an "all or none" process; partial insertion of the transmembrane beta-barrel does not occur. Therefore, cooperative interactions between the monomers of the prepore drive the prepore to pore conversion that results in the formation of the transmembrane beta-barrel.
    Journal of Biological Chemistry 04/2002; 277(13):11597-605. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Proteins and peptides that form membrane-spanning pores and channels comprise a diverse class of molecules ranging from short peptides that are unregulated and create non-selective pathways to large ion channel proteins that are highly regulated and exhibit exquisite selectivity for particular ions. The diversity of regulation and selectivity, together with recent advances in protein "re-engineering" technology, provide a strong framework on which to build custom molecules with wide-ranging biotechnological application. Here we review a selection of pore-forming peptides and proteins from a number of different species to highlight their structural and functional diversity. The current and potential uses of native and re-engineered molecules are discussed together with a novel strategy to re-engineer alpha-hemolysin to create targeted and regulable cell-killing agents termed proimmunolysins. Numerous pore-forming peptides are currently in development as antimicrobial agents with potential application as anti-tumorigenic agents. In addition to their roles as biotherapeutic agents, pore-forming proteins are also being developed as biosensors for a range of different analytes. Recent examples of this technology include the use of alpha-hemolysin with an adapter molecule to create sensors for organic molecules and gramicidin as a general-purpose sensor for a range of analytes. These approaches promise to deliver a configurable binding site for analytes encoded in a readily measured electrical signal. The number of applications for pore-forming molecules is sure to grow in both quantity and diversity with increased knowledge of the fundamental structure and function of pores.
    Current Pharmaceutical Biotechnology 07/2002; 3(2):99-115. · 2.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Equinatoxin II is a representative of actinoporins, eukaryotic pore-forming toxins from sea anemones. It creates pores in natural and artificial lipid membranes by an association of three or four monomers. Cysteine-scanning mutagenesis was used to study the structure of the N terminus, which is proposed to be crucial in transmembrane pore formation. We provide data for two steps of pore formation: a lipid-bound monomeric intermediate state and a final oligomeric pore. Results show that residues 10-28 are organized as an alpha-helix in both steps. In the first step, the whole region is transferred to a lipid-water interface, laying flat on the membrane. In the pore-forming state, the hydrophilic side of the amphipathic helix lines the pore lumen. The pore has a restriction around Asp-10, according to the permeabilization ratio of ions flowing through pores formed by chemically modified mutants. A general model was introduced to derive the tilt angle of the helix from the ion current data. This study reveals that actinoporins use a unique single helix insertion mechanism for pore formation.
    Journal of Biological Chemistry 07/2003; 278(25):22678-85. · 4.65 Impact Factor


Available from
Sep 2, 2014