Article

Prescribing aerobic exercise for the regulation of postprandial lipid metabolism : current research and recommendations.

Department of Surgery, The University of Texas Medical Branch, Galveston, Texas, USA.
Sports Medicine (Impact Factor: 5.32). 02/2006; 36(7):547-60. DOI: 10.2165/00007256-200636070-00001
Source: PubMed

ABSTRACT Prolonged presence of elevated plasma triglycerides (TGs) during the postprandial period has been suggested to increase the risk for coronary artery disease. Aerobic exercise attenuates postprandial lipaemia and this has generally been described as a short-term effect of the exercise. Effects of exercise on postprandial lipaemia have mostly been investigated, and documented, with large exercise-induced energy expenditures (i.e. 1000 kcal). The exact mechanisms involved in the attenuation of postprandial lipaemia with exercise are not completely understood, but it appears that at least two mechanisms are involved: a decrease in TG secretion by the liver and an increase in plasma TG clearance by the muscle. Changes in the metabolism of other lipids, such as those in high-density lipoprotein cholesterol, have been documented only when the exercise is performed some hours before the fat meal. Although factors such as the physical fitness and percentage body fat of an individual are likely to also be involved, the most important factors determining the magnitude of the attenuation in postprandial lipaemia appear to be the magnitude of the exercise-induced energy expenditure and the intensity of exercise. To date, the evidence suggests that healthy individuals can generally induce favourable changes in postprandial lipaemia with aerobic exercise that: (i) is completed during the period extending from 16 hours before a meal through 1.5 hours after a meal; (ii) is of moderate intensity; and (iii) results in an energy expenditure of approximately 500 kcal (or more).

0 Bookmarks
 · 
78 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: High-intensity intermittent exercise (HIIE) such as the 30-s Wingate test attenuates postprandial triacylglycerol (TG), however, the ability of shorter versions of HIIE to reduce postprandial TG is undetermined. Thus, the effect of 8-s sprinting bouts of HIIE on blood TG levels of 12 females after consumption of a high-fat meal (HFM) was examined. Twelve young, sedentary women (BMI 25.1 ± 2.3 kg/m2; age 21.3 ± 2.1 years) completed a maximal oxygen uptake test and then on different days underwent either an exercise or a no-exercise postprandial TG condition. Both conditions involved consuming a HFM after a 12-hr fast. The HFM, in milkshake form provided 4170 kJ (993 Kcal) of energy and 98 g fat. Order was counter-balanced. In the exercise condition participants completed 20-min of HIIE cycling consisting of repeated bouts of 8 s sprint cycling (100-115 rpm) and 12 s of active rest (easy pedaling) 14 hr before consuming the HFM. Blood samples were collected hourly after the HFM for 4 hr. Total postprandial TG was 13% lower, p = .004, in the exercise (5.84 ± 1.08 mmol L-1 4 h-1)compared to the no-exercise condition (6.71 ± 1.63 mmol L-1 4 h-1). In conclusion, HIIE significantly attenuated postprandial TG in sedentary young women.
    International Journal of Sport Nutrition and Exercise Metabolism 10/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aerobic exercise can reduce postprandial lipemia, and possibly oxidative stress, when performed prior to a lipid-rich meal.
    Arbeitsphysiologie 06/2014; · 2.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Exaggerated postprandial triacylglycerol concentrations ([TAG]) independently predict future cardiovascular events. Acute exercise and diet interventions attenuate postprandial [TAG] in adults. This paper aims to examine the exercise postprandial lipemia studies published to date in young people. Nine studies satisfied the inclusion criteria adopted for this summary. The majority of studies are in boys (22% girls) and have shown a single ~60 min session of moderate intensity exercise, performed 12 to 16 h before a standardised meal, reduces postprandial [TAG]. Manipulations of exercise duration and intensity suggest an exercise energy expenditure dose-dependent response is not supported directly in healthy young people. Studies investigating alternative exercise bouts have reported lower postprandial [TAG] after simulated intermittent games activity, high intensity interval running and cumulative 10-min blocks over several hours, which may appeal to the spontaneous physical activity habits of young people. Although extension of these initial findings is warranted, exercise may be an effective strategy to promote regular benefits in TAG metabolism in children and adolescents; this may contribute to an improved cardiovascular disease risk profile early in life.
    Pediatric exercise science 11/2013; · 1.61 Impact Factor