JAK2T875N is a novel activating mutation that results in myeloproliferative disease with features of megakaryoblastic leukemia in a murine bone marrow transplantation model

Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
Blood (Impact Factor: 9.78). 11/2006; 108(8):2770-9. DOI: 10.1182/blood-2006-04-014712
Source: PubMed

ABSTRACT Acute megakaryoblastic leukemia (AMKL) is a subtype of acute myeloid leukemia associated with a poor prognosis. However, there are relatively few insights into the genetic etiology of AMKL. We developed a screening assay for mutations that cause AMKL, based on the hypothesis that constitutive activation of STAT5 would be a biochemical indicator of mutation in an upstream effector tyrosine kinase. We screened human AMKL cell lines for constitutive STAT5 activation, and then used an approach combining mass spectrometry identification of tyrosine phosphorylated proteins and growth inhibition in the presence of selective small molecule tyrosine kinase inhibitors that would inform DNA sequence analysis of candidate tyrosine kinases. Using this strategy, we identified a new JAK2T875N mutation in the AMKL cell line CHRF-288-11. JAK2T875N is a constitutively activated tyrosine kinase that activates downstream effectors including STAT5 in hematopoietic cells in vitro. In a murine transplant model, JAK2T875N induced a myeloproliferative disease characterized by features of AMKL, including megakaryocytic hyperplasia in the spleen; impaired megakaryocyte polyploidization; and increased reticulin fibrosis of the bone marrow and spleen. These findings provide new insights into pathways and therapeutic targets that contribute to the pathogenesis of AMKL.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The myeloproliferative neoplasms (MPN) and myelodysplastic syndromes (MDS) occasionally demonstrate overlapping morphological features including hypercellularity, mild/nonspecific dysplastic changes and variable bone marrow fibrosis. Thus, when the associated bone marrow fibrosis results in a suboptimal specimen for morphological evaluation, the descriptive diagnosis "fibrotic marrow with features indeterminate for MDS versus MPN" is often applied. The JAK2 ( V617F ) mutation was recently shown to be frequently identified in MPN, but it is rarely present in other myeloid disorders. However, the diagnostic utility of JAK2 ( V617F ) screening in hypercellular bone marrow specimens with fibrosis has not been previously investigated. Using a real-time polymerase chain reaction melting-curve assay capable of detecting JAK2 ( V617F ) in archived fixed materials, we retrospectively studied JAK2 ( V617F ) in 45 cases with fibrotic hypercellular bone marrow at initial presentation, including 19 cases initially described as "with features indeterminate for MDS versus MPN". These 19 cases were reclassified into more specific categories of MDS (n = 14) or MPN (n = 5) based on the availability of subsequent clinical data and/or bone marrow examinations. The JAK2 ( V617F ) allele was identified in 17 out of 18 BCR/ABL gene-negative MPN cases with marrow fibrosis, whereas only wild-type alleles were identified in the remaining non-MPN cases. Importantly, JAK2 ( V617F ) alleles were seen in all five cases of "with features indeterminate for MDS versus MPN" at initial presentation that were later determined to be MPN, but they were absent in the 14 cases later determined to be MDS. Our results suggest that JAK2 ( V617F ) allele evaluation can be a useful ancillary test for discriminating MDS from MPN in specimens with bone marrow fibrosis.
    Journal of Hematopathology 10/2008; 1(2):111-7. DOI:10.1007/s12308-008-0014-8
  • [Show abstract] [Hide abstract]
    ABSTRACT: JAK2 is an important target in multiple processes associated with tumor growth. In this study, virtual screening was employed for hit compound identification with chemical libraries using SurflexDock. Subsequently, hit optimization for potent and selective candidate JAK2 inhibitors was performed through synthesis of diverse C-1 substituted quinazoline derivatives. A novel compound 5p, (6,7-dimethoxyquinazolin-4-yl)naphthalen-1-ylamine, was thus obtained. JAK2 inhibitory activity of 5p was 43% at 20μM and this was comparable to AG490, a representative JAK2 inhibitor. Moreover, 5p showed a positive correlation between JAK2 inhibition and cytotoxicity; 5p treatment in HT-29 cells strongly inhibited JAK2 activation and subsequent STAT3 phosphorylation, reduced anti-apoptotic protein levels, and finally induced apoptosis. This suggests that compound 5p is a candidate inhibitor of JAK2 and its downstream STAT3 signaling pathway for antitumor therapy. In the docking model, the quinazoline template of 5k, the lead compound, occupied a hydrophobic region such as Leu856, Leu855, Ala880, Leu932 and Gly935, and the highly conserved hydrogen bond was created by 6-OMe of the ring template, which binds to the NH of Arg980. Moreover, hydrophobic interactions were identified between morpholine moiety and the hydrophobic region formed by Leu855, Ala880, Tyr931, Val911 and Met929. Also, compound 5k more strongly inhibited JAK2 phosphorylation in mouse embryonic stem cells than AG490. Our study shows the successful application of virtual screening for lead discovery and we propose that the novel compound 5p can be an effective JAK2 inhibitor candidate for further antitumor agent research.
    Bioorganic & medicinal chemistry 01/2011; 19(2):968-77. DOI:10.1016/j.bmc.2010.11.057 · 2.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The JAK2 V617F mutation present in over 95% of Polycythemia Vera patients and in 50% of Essential Thrombocythemia and Primary Myelofibrosis patients renders the kinase constitutively active. In the absence of a three-dimensional structure for the full-length protein, the mechanism of activation of JAK2 V617F has remained elusive. In this study, we used functional mutagenesis to investigate the involvement of the JH2 alphaC helix in the constitutive activation of JAK2 V617F. We show that residue F595, located in the middle of the alphaC helix of JH2, is indispensable for the constitutive activity of JAK2 V617F. Mutation of F595 to Ala, Lys, Val or Ile significantly decreases the constitutive activity of JAK2 V617F, but F595W and F595Y are able to restore it, implying an aromaticity requirement at position 595. Substitution of F595 to Ala was also able to decrease the constitutive activity of two other JAK2 mutants, T875N and R683G, as well as JAK2 K539L, albeit to a lower extent. In contrast, the F595 mutants are activated by erythropoietin-bound EpoR. We also explored the relationship between the dimeric conformation of EpoR and several JAK2 mutants. Since residue F595 is crucial to the constitutive activation of JAK2 V617F but not to initiation of JAK2 activation by cytokines, we suggest that small molecules that target the region around this residue might specifically block oncogenic JAK2 and spare JAK2 wild-type.
    PLoS ONE 06/2010; 5(6):e11157. DOI:10.1371/journal.pone.0011157 · 3.53 Impact Factor

Gerlinde Wernig